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ABSTRACT

Since early 2013, to accommodate the vast array of possibilities introduced by the concept of
integrated energy parks that could incorporate multiple energy generation sources and multiple
energy users, I[daho National Laboratory (INL) has been developing a library of high-fidelity
process models in the Modelica modeling language. These models are a cornerstone of the
analysis and optimization tools developed via the Department of Energy Office of Nuclear
Energy (DOE-NE) Integrated Energy Systems (IES) program, led by Idaho National Laboratory
(INL). Models are used to create and characterize system inertia, thermal losses, and the
efficiency of integrated systems. These physical models help map physical performance into
economic performance, allowing for system-level optimization. In addition, the models are used
to test innovative system-level control strategies for interconnected thermal generators.

However, for real-world applications, it is not always practical to develop a model or rewrite
an existing model in Modelica; instead, interoperability with Legacy FORTRAN, C, Python, or
other codes is required. To accomplish this interoperability the IES Program is seeking to modify
the existing suite of physical models, currently held in the HY BRID physical modeling
repository, to be consistent with a “plug-and-play” approach in Modelica/Dymola models using
Functional Mock-Up Units (FMUs), Functional Mock-Up Interfaces (FMIs), and machine-
learning techniques. The models developed are held within the HY BRID repository that is part
of the IES Framework for Optimization of ResourCes and Economics ecosystem (FORCE).

This report provides an overview of all the performed activities revolving around the
deployment of methods, software infrastructures, guidelines, and a workflow for the construction
and usage of models, as encapsulated using the FMI/FMU protocols and standards. The report is
organized into three main macro-subjects, all of which are interconnected:

e FMI/FMU adaptors for Modelica models
e The HYBRID repository’s new structure and open-source deployment

e RAVEN FMI/FMU exporting capabilities and artificial-intelligence (Al)-based analysis
acceleration.

The first part of the report discusses the FMI/FMU adaptors created within the HYBRID
repository to allow users to quickly export models such as FMUs. Several examples are given,
highlighting the step-by-step process of converting an existing Modelica model into an FMU for
use within the Dymola platform. Simulation results demonstrate that, though minor differences
may occur, overall control, trends, and solution integrity are maintained between the standard
Modelica simulation and FMU simulation results. However, it is worth noting that, for small
systems, the FMU requires a longer simulation time than the Modelica-only simulation. Using
this process, a company can provide external entities with models that contain proprietary
information, without disclosing any model-related information that could be considered business
sensitive. Such an ability would allow institutions to bypass the necessity of having
“whitewashed” data.

In the second part of the report, the new structure of the HYBRID repository is discussed,
with a major focus on the series of completed updates. These updates include the addition of
Modelica system-level regression tests and software quality assurance (SQA) documentation to
ensure that modifications to the Modelica models do not alter system-level model results.

il



The third and final part of the report documents the work performed for deploying methods
and workflows to construct RAVEN Al-based models that are compliant with the FMI/FMU
standard. Such work is key for deployment of the “flexible ecosystem” concept, since it allows
for the replacement of high-fidelity Modelica models (or any other FMI/FMU-compliant model)
with RAVEN-generated Al surrogate models.

Overall, extensive work has been completed in regard to developing FMUs and FMIs from
existing models, understanding the requirements and limitations of FMUs, and open-sourcing the
HYBRID repository with an integrated regression system for use within FORCE.

v
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1. INTRODUCTION

Grid demand variability is an inherent part of the modern dynamic lifestyle. The addition of
renewable energy (e.g., wind and solar) technologies introduces variability into the grid supply.
As renewable energy integration continues to grow, variability will further increase. The
Department of Energy Office of Nuclear Energy (DOE-NE) Integrated Energy Systems (IES)
Program, led by Idaho National Laboratory (INL), is researching the effects the impact of
increasing variability on grid reliability and generator profitability, and is also investigating the
complementary role of non-electric applications of these generators. IES involve the design,
integration, and coordinated operation of several complex, traditionally standalone systems. The
control algorithms involved are unique to each application and component design. IES
architecture can include process steam applications, thermal energy storage, and the presence of
intermittent energy sources such as wind and solar, as illustrated in Figure 1.
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Figure 1. Example IES architecture, illustrating thermal and electrical interconnection to support
hydrogen production and chemical conversion.

The goal of these systems is to operate as economically and efficiently as possible. For
integrated energy parks that incorporate thermal storage, this means operating thermal generators
at full power and storing excess energy during times of low total demand, then discharging that
energy during times of high demand.

Since early 2013, to accommodate the vast array of possibilities introduced by integrated
energy parks, the IES program team has been developing a library of high-fidelity process
models in the Modelica modeling language [1]-[4]. Modelica is a non-proprietary, object-
oriented, equation-based language for conveniently modeling complex physical systems. It is
inherently time-dependent and enables the swift interconnection of independently developed

1



models. As an equation-based modeling language that employs differential-algebraic equation
solvers, Modelica allows users to focus on the physics of the problem rather than on the solving
technique, thus enabling faster model generation and, ultimately, analysis. This feature,
alongside system flexibility, has led to widespread use of Modelica for commercial applications
throughout the industry. System interconnectivity and the ability to quickly develop novel
control strategies while still encompassing overall system physics is why INL chose to develop
the IES framework in the Modelica language.

The dynamic physical models created in Modelica are a cornerstone of the IES program.
These models are used to create system architectures and characterize the system inertia, thermal
losses, and the efficiency of integrated systems. These physical models help map physical
performance into economic performance, allowing for system-level optimization. In addition, the
models are used to test innovative system-level control strategies for interconnected thermal
generators. However, it is noted that, for real-world applications, it is not always practical to
rewrite a model in Modelica; instead, interoperability with Legacy FORTRAN, C, Python, or
other codes may be required.

To accomplish this, the IES Program is seeking to modify HYBRID, the existing physical
modeling repository, to be consistent with the “plug-and-play” approach in Modelica/Dymola
models using Functional Mock-Up Units (FMUs), Functional Mock-Up Interfaces (FMIs), and
machine-learning techniques (see Figure 2). The final product will greatly enhance the physical
modeling interoperability within INL’s Framework for Optimization of ResourCes and
Economics ecosystem (FORCE) that is used to solve system/grid level optimization problems

[51.[6].
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This report summarizes the fiscal year (FY) 2020 efforts to create a plug-and-play repository
of process models using the existing HYBRID repository, FMIs, FMUs [4], and the newly
developed capabilities in the Risk Analysis and Virtual Environment (RAVEN) software for
exporting artificial intelligence (Al)-based FMI/FMU models. The document characterizes and
demonstrates the capabilities and improvements made to the previously-developed HYBRID
repository of Modelica models for use as a software-quality-assured (SQA) plug-and-play
system within FORCE.

The infrastructure of the GitHub repository that hosts the HYBRID repository was also
enhanced. These improvements, described later in full detail, include the development (using the
RAVEN-based ROOK regression system) of a Dymola output “differ” script for use with the
commercially available Modelica-based modeling and simulation environment (i.e., a Dynamic
Modeling Laboratory [Dymola] version 2021 FDO1 [7]), inclusion of the Oak Ridge National
Laboratory (ORNL) TRANSFORM library as an automatic submodule [8], creation of a user
manual [9], and development of component-level regression tests for each Modelica model.

Extensive work was carried out on the deployment of methods for constructing RAVEN Al-
based models compliant with the FMI/FMU standard. Such work represents the necessary initial
development for deploying the “flexible ecosystem” (plug-and-play) concept, since it allows for
replacement of high-fidelity Modelica models (or any other FMI/FMU-compliant model) with
RAVEN-generated Al surrogate models. This capability enables the deployment of acceleration
schemes for analyzing IES.



The Conclusions section of this report highlights the high flexibility achieved via the plug-
and-play framework, possible shortcomings of the approach, and areas for further enhancement.

2. FUNCTIONAL MOCK-UP INTERFACES AND UNITS

This section briefly describes the FMIs and FMUs. As per the Modelon website
(https://www.modelon.com): “FMI is an open standard for exchanging dynamical simulation
models between different tools in a standardized format.”

FMIs were first introduced by Dassault Systems under the name MODELISAR in 2008.
FMIs define a standardized interface for use in computer simulations to develop complex cyber-
physical systems. Additionally, FMIs/FMUs can be exported as binary files, enabling industry
partners to exchange and simulate proprietary information safely and securely, without potential
information leakage.

The FMI standard describes an open format for exporting and importing simulation models
using a common data exchange nomenclature. In other words, the FMI standard allows the user
to retain the same model while selecting the tools best suited for each type of analysis.

In order to be executed, an FMI is always “shipped” with an FMU. An FMU is the
executable that implements the FMI. During exportation of an FMU, an FMU archive is
generated from a systems model, whereas during an FMU import, a systems model is generated
from an FMU archive.

FMUs contain the following:

- A model description XML file: This file contains information about the model (e.g.,
variable definitions: type, unit, description, etc.) and other more general model
information, such as model name, generation tool, and FMI version.

- Model equations: A model can be described using ordinary differential equations,
algebraic relations, and discrete equations—including time, state, and step events.
These equations can in turn be represented by a small set of C functions. The C code is
then distributed in the FMU in source and/or binary form, and one FMU can contain
binaries for more than one platform and/or platform version.

- Optional resource files: Other optional files might be included in the FMU, such as
documentation files (HTML), model icons (bitmap files), maps and tables, and other
libraries or dynamic link libraries (DLLs) used in the model.

The FMI/FMU standard currently specifies two types of protocols:
- FMI/FMU for model exchange (import and export)

- FMI/FMU for co-simulation (master and slave).

The main difference between these two protocols is that, in model exchange, the FMU is
simulated using the importing tool's solver, whereas in co-simulation, the FMU is shipped with
its own solver.

The FMI for model exchange allows FMUs to be used in offline or online simulation—with
several FMUs potentially being connected—or in embedded control systems on microprocessors.


https://www.modelon.com/

2.1 Co-simulation

Figure 3 shows the information flow and scheme of FMIs/FMUs in a co-simulation
configuration. The co-simulation (CS) configuration is characterized by:

- Standalone black-box simulation components

- Data exchange being restricted to discrete communication “checkpoints”

- Between two consecutive communication checkpoints, the system model is solved by
its internal solver.

In summary, the goal of a co-simulation operation is to individually compute the solution of
time-dependent coupled systems and have them communicate back and forth at predetermined
time steps, At, known as communication steps (or checkpoints). The simulation is independently
performed between all the subsystems, and at each At there is a communication and transfer of
boundary conditions between subsystems. Because of the independent nature of these
subsystems, an FMI for co-simulation is the easiest method to implement. However, due to the
different solver types and the need to specify At, the scheme between systems becomes fully
explicit. Being fully explicit, it is crucial to identify a small enough At to ensure system stability.
This step size limitation ultimately reduces the simulation speed.
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Figure 3. Co-simulation FMI/FMU scheme.



2.2 Model Exchange

Figure 4 shows the information flow and scheme of an FMI/FMU in a model exchange (ME)
configuration. As shown in the figure, the model exchange configuration can be described as
having the following characteristics:

- Standardized access to model equations

- Models described by algebraic, differential, and discrete equations

- Monitoring of time, state, and step events

- Models that must be solved using solvers provided by the embedding environment.

In summary, in a model exchange FMI/FMU, the numerical solver is supplied by the
importing tool. The FMU provides functions to set the state/inputs and compute the state
derivatives. The solver in the importing tool will determine what time steps to use and how to
compute the state at each subsequent time step.
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Figure 4. Model exchange FMI/FMU scheme.

2.3 Advantages of Each Protocol

Each of the two protocols described in the previous section, namely CS and ME, offer certain
advantages.

Co-simulation
1. Notall tools support both protocol types. Support for CS is more common than for ME.
2. The numerics of the model may require a specific solver available in the exporting tool
but not in the importing tool.



3. The FMU may represent a sampled data system (e.g., signal processing or control
algorithms) not governed by differential equations and therefore more naturally
expressed as a co-simulation FMU.

4. The exporting tool may have a more efficient implementation of the solver than the
importing tool.

Model exchange
1. An explicit scheme is avoided, since the entire solve is done simultaneously.
2. Dynamic time stepping is allowed.
3. The importing tool could have a more efficient implementation of the solver than the
exporting tool.

3. MODELICA TO FMU ADAPTATION

Modelica is a physical modeling language that relies on an acausal (rather than causal)
assignment of equations. This means that an equation can only appear once, and that the
translator and system solvers will determine the proper way to assign the flow of information. In
addition, since Modelica is a physical modeling language, there are the assignments of special
variable containers “flow” and ““stream” that have an inherent physical representation in the
code. Flow variables have a direction and must sum to zero in a “connection.” The “stream”
qualifier is used to qualify when a given element in a connection has an intensive property
flowing through a connector. These “connectors” include a singular flow variable with several
stream variables alongside it. For example, a “fluid port” is a connector that has the mass flow
rate as the “flow” variable and enthalpy as the “stream” variable. Mass flow is what physically
goes through the connector, while enthalpy is a property of the mass flow. This nuance in
variable types is particularly important when considering the translation of Modelica models into
FMIs and FMUs. FMIs can only import and export real input/output signals. These signals
cannot retain the physical properties seen in Modelica, thus requiring special adaptors to translate
them back into physical values for use in other Modelica models.

3.1 Adaptors

For connections between FMIs and other Modelica models within the Dymola platform, a set
of standardized variables and adapters are needed to properly transmit energy values among
subsystems. This is particularly true if the interconnection is between two physical models, such
as a nuclear power plant and a turbine. This is because the physical models contain “ports,” as
shown in Figure 5.



Fluid Ports

Energy Manifold Balance of Plant

Figure 5. Fluid ports (note that “ports” are a container method in Modelica used to transfer several pieces
of physics-based information within a single “connector”).

Each fluid port contains:

e Mass flow (flow variable), m_flow

o Conditional enthalpy (stream variable), h_outflow
e Pressure, P

e Trace substance fraction (stream variable), Ci

e Mass fraction (stream variable), Xi.

Each electric port contains:

e Power (flow variable), W

e Frequency, f

To properly transition from ports to input and output signals, the individual components of
the ports must be separated out and assumed to be either an input or an output. This is illustrated
in Figure 6, with each fluid port being separated into its five constituent pieces (mass flow,
enthalpy, pressure, mass fraction, trace substance fraction), and the electric port being separated
into its two constituent parts (power and frequency).
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In the HYBRID repository package structure, a set of adaptors was created and added to the
utility folder to enable users to convert an existing Modelica model into a model ready for export
as a FMU. The package placement is seen in Figure 7. Further details on each FMI template and
interface are outlined in the next section.

Balance of Plant

Figure 6. Transition from a Modelica physical model into an FMU.
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Figure 7. FMU template folder location within the larger Nuclear Hybrid Energy Systems (NHES) folder
as part of the HYBRID Repository.



Fluid Port Adaptors

Within the Utility. FMI_Templates folder is an adaptor package created specifically for
Modelica standard library fluid adaptors. This package is called MSLFluidAdaptors, and it
models acausal to causal adaptors. This folder was created in unison with Modelon. Within this
folder are two adaptors, shown in Figure 8. One is a “pressure to mass flow” adaptor, aptly
named PressuretoMassFlow. This adaptor’s fluid port is best connected to a flow port of some
sort (e.g., valves, resistance, pipe model). The inputs to this model are the pressure at the
interface, upstream enthalpy from the causal side, upstream mass fraction from the causal side,
and upstream trace composition from the causal side. The outputs are the acausal mass-flow rate,
upstream enthalpy from the acausal side, upstream mass fraction from the acausal side, and
upstream trace composition from the acausal side.

The second adaptor, called the MassFlowtoPressure adaptor, is a “mass flow to pressure”
adaptor. This adaptor’s fluid port is best connected to a volume port (e.g., pressure sink, tank
model). The inputs to this model are the causal mass-flow rate, upstream enthalpy from the
causal side, upstream mass fraction from the causal side, and upstream trace composition from
the causal side. The outputs are the pressure at the interface, upstream enthalpy from the acausal
side, upstream mass fraction from the acausal side, and upstream trace composition from the
acausal side.

m_flow_out m_flow_in <
h_out h_in ‘
X_out X_in ‘
C_out C_in <
b -

’ - p_in pout !

P - nin h_out

P - xn X_out

p' - cn C_out

Figure 8. (Left) PressuretoMassFlow adaptor. This adaptor is best connected to a resistance port able to
set the output mass flow rate. (Right) MassFlowtoPressure adaptor. This adaptor is best connected to a
volume port able to set the output pressure. Note: Both of these adaptors were created by Modelon for use
in the INL plug-and-play framework as part of an FMI/FMU course subcontract.

Figure 9 illustrates the usage of the two adaptors on a single model involving reversible flow.
The model is of a series of two fully open valves connected to a volume source positioned
between them, and a pressure source on either side of the valves. The system fluid is moist air
from the Modelica standard library. The pressure source is then subjected to a 1 Hz oscillatory
frequency on the pressure system, as would be present in a fast-moving pressure chamber, while

10



the pressure sink remains at a constant pressure. In normal operations, this system will have a
reversible flow, as the pressure of the source oscillates about the pressure sink’s pressure. Such
scenarios have been challenging to meet with FMIs and FMUs, due to the reversible nature of
the mass flow. With the new adaptors, this reversible flow issue can be met.

freqHz=1 Hz k=293.15
temperature
: volume = m_flow_out — - P e
i h_out 1 ’ - h_in
1 X_out L > . X_in
C_out ) p, - cn
3 > " : o
§ p?essure_scurce volumeFlowRate volumeFlowRate 1 - ; RS pressure_sink
Xin - .4 : ‘ X_out
cn - ] C_out

] H
e fressureToMassFowt -------—-- ! massFlowToPressuie

Figure 9. An example (using adaptors) involving two pressure sources using moist air, one of which
oscillates in pressure, causing a mass flow reversal. The unit in the red box will become an FMU.
(k=Temperature input to pressure flow boundary; freqHz = pressure frequency oscillation placed on
pressure_source).

The unit inside the red box in Figure 9 was exported as both a model exchange and co-
simulation FMU, as shown in Figure 10 and Figure 11. All systems were then run for 10 seconds
of simulation time. The results are depicted in Figure 12.
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Figure 10. Example of a reversible flow using two pressure sources, moist air, and a model exchange
FMU. (k=Temperature input to pressure flow boundary; freqHz = pressure frequency oscillation placed
on pressure_source).
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Figure 11. Example of a reversible flow using two pressure sources, moist air, and a co-simulation FMU.
(k=Temperature input to pressure flow boundary; freqHz = pressure frequency oscillation placed on
pressure_source).

12



Temperature

Original Model Model Exchange Co-Simulation

Temperature [Celsius]

Time [s]
Mass Flow

—— Original Model —— Model Exchange —— Co-Simulation
0.08

0.06+ y
\ { f
1 i 1 ‘i 1
0.02 f i
i | ] ) i
0.00 ] 1!
{ IJ
1 i \ 1
1 1
1

_ﬁ_ﬁk
———

-0.02

|
| | {
-0.04 {
|| ‘l ]‘ 1 1
0.06- \ 1 i 1 \ 1
/ ] /
008 /

-0.10 T T T T T T T T T T T T T T T T T T T 1
0 1 2 3 4 5 6 7 8 a 10

Time [s]

Mass Flow [kgis]

Figure 12. Comparison of mass flow to the pressure sink across the original model, model exchange
FMU, and co-simulation FMU (timestep = 0.02 seconds).

The results showcase that, by utilizing the fluid port adaptors, reversible flow is achievable in
both the model exchange and co-simulation FMIs/FMUs. However, these capabilities carry
additional overhead in regard to central processing unit (CPU) time. Model exchange for this
particular model increases the simulation time from 2.364 to 6.749 seconds. Co-simulation with
a 0.02-second communication interval took 10.795 seconds. Even so, co-simulation still shows
the largest error, due to co-simulation models inherently being an explicit solve. However, given
a sufficiently small communication interval, and depending on the dynamics of the model, an
acceptable solution can be achieved.

Thermal Port Adaptors

Within the Utility. FMI_Templates folder is an adaptor package created specifically for
Modelica standard library thermal adaptors. This package is called MSLHeatAdaptors, and it
models acausal to causal adaptors. These models were initially made available in the Modelica
standard library and have been augmented with additional examples and placed within the NHES
package for ease of access relative to other FMI adaptors. Two adaptors are included, one being
the GeneralHeatFlowToTemperature adaptor. The inputs to this adaptor are the acausal heat flow
port, causal heat flow, and optional causal first and second derivatives of heat flow. The outputs
are the temperature and the optional first and second derivatives of temperature.
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The second adaptor is the General TemperaturetoHeatFlow adaptor. The inputs to this adaptor
are the acausal heat flow port, causal temperature, and optional causal first and second
derivatives of temperature. The outputs are the heat flow and the optional first and second
derivatives of heat flow.

b' T T
P dT dT
P d2T d2T

der2(Q) der2(Q) <
der(Q) der(Q) <

Q Q .’.4

Figure 13. (Left) GeneralTemperatureToHeatFlow adaptor for use in the INL plug-and-play framework.
(Right) GeneralHeatFlowToTemperature adaptor for use in the INL plug-and-play framework.
(T=temperature, dT = first derivative of temperature, d2T = second derivative of temperature, Q = heat
flow, der(Q) = first derivative of heat flow, der2(Q) = second derivative of heat flow.) Note: only T and Q
are required the derivative values are optional for stability.

Figure 14 illustrates the usage of the two adaptors in a single model involving two methods
of heat port usage. The upper model demonstrates how to export two heat capacitors and connect
them together in a target system. This requires that one of the capacitors (here, DirectCapacity)
be defined to have states, and that the temperature and derivatives of the temperature are
provided in the interface. The other capacitor (here: InverseCapacity) requires a heat flow in
accordance with the provided input temperature and derivative of temperature. The lower part
demonstrates how to export a conduction element that only requires temperatures for its
conduction law, and connects this conduction law to both the heat capacitors in a target system.
Both models will be translated into a model exchange and co-simulation model, as shown in
Figure 15, Figure 16, Figure 17, and Figure 18. The results are compared in Figure 19 and Figure
20.
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Figure 14. Example meant to demonstrate the FMU variants available with the thermal FMU adaptors.
The upper part demonstrates how to export two heat capacitors and connect them together in a target
system. The lower part demonstrates how to export a conduction element that only requires temperatures
for its conduction law, and connects this conduction law to both heat capacitors in a target system.
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Figure 15. Demonstration of an FMU variant example that uses model exchange FMUs for the thermal

heat port adaptors.

Q_flowDrive

forceSource

>

heatCapacitor

f e
C

i

heatFiowToTemparature

derT

Q_flow1

mass

temperature ToHeatF I
T g =
T L

Figure 16. Collapse of the upper part of Figure 14 into a single FMU for co-simulation. This is required
because the frequency between the direct and inverse conduction problem is so fast that a single cut
between the two could not be made without instabilities occurring.
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Figure 17. Upper model of Figure 14 connected with the combined direct/inverse co-simulation FMU.
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Figure 18. Lower model of Figure 14, co-simulation FMU.

The results showcase that, by utilizing the thermal adaptors, acceptable results in terms of the
heat flow between models can be achieved via both model exchange and co-simulation
FMIs/FMUs. However, these capabilities carry additional overhead in regard to CPU time, as
was the case in the fluid port scenario. The co-simulation mode, though theoretically easier to
export to external codes thanks to its inclusion of a solver, required the most augmentation, due
to the fast system dynamics. This limitation required the FMU to include both the direct and
inverse capacitors within a singular model, as shown in Figure 16, otherwise a divergent solution
was acquired. Even with this additional step, the co-simulation solve still showed the largest
error, as depicted in Figure 19 and Figure 20. This is because co-simulation models are
inherently an explicit solve. However, given a sufficiently small communication interval and
depending on the dynamics of the model, an acceptable solution can be achieved.
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Figure 19. Direct/inverse simulation results for the original, model exchange, and co-simulation
(communication interval: 0.002 seconds) FMU runs. (Top) Heat flow into the capacitor. (Bottom)
Capacitor 3b temperature.
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Figure 20. Conduction (lower model) simulation results for the original, model exchange, and co-
simulation (communication interval: 0.002 seconds) FMU runs. (Top) Heat flow into the capacitor.
(Bottom) Capacitor 3b temperature.

Electrical Port Adaptors

Within the Utility. FMI_Templates folder is a package created specifically for electrical
adaptors. This package is called ElectricalAdaptors, and it models acausal to causal adaptors.
Two adaptors are included (see Figure 21), one being the GeneraPowerFlowToFrequency
adaptor. The inputs to this adaptor are the acausal electrical port, causal power, and optional
causal first and second derivatives of power. The outputs are the frequency and the optional first
and second derivatives of frequency.

The second adaptor is the GeneralFrequencyToPowerFlow adaptor. The inputs to this
adaptor are the acausal electrical port, causal frequency, and optional causal first and second
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derivatives of frequency. The outputs are the power flow and the optional first and second
derivatives of power flow.

P freq | freq
P dfreq dfreq

>

O o
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Power Power<

Figure 21. (Left) GeneralFrequencyToPowerFlow adaptor for use in the INL plug-and-play framework.
(Right) GeneralPowerFlowToFrequency adaptor for use in the INL plug-and-play framework. (Red circle
represents the electrical port, with inputs and outputs equal to the aforementioned variables in the

section).

3.2 FMI Construction Guide

To properly create and utilize a model as an FMI/FMU, the following five steps must be

accomplished.
1. Model Preparation
2. Adaptors
3. Export
4. Import
5. Simulation

This section seeks to provide step-by-step guidance on how each of these steps can be
accomplished.
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Model Preparation

For a model to become a usable FMU, it must contain all the required input/output variables
within itself, aside from those designated to come from an outside model. This requirement
means that, for units featuring interchangeable control systems, a particular control system must
be declared via a top-level declaration in an example style file. An example of both an incorrect
and a correct file format for a natural gas peaking turbine are shown in Figure 22 and Figure 23,
respectively. In Figure 22 the natural gas turbine model includes the basic constituent parts for its
simulation (compressor, turbine, combustion chamber, inertial generator shaft, generator, fuel
controllers, and geometrical data assumptions). But in Dymola if this model is run it is missing a
selected control system for the sensor and actuator bus as this is a “replaceable” component.
Meaning the model needs to be imported within a new model to allow us to select the control
system.
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Figure 22. Incorrect level for proper export as FMI/FMU. Control system has not been declared and is
replaceable from a higher level within the HYBRID repository.

This placement within a new model is shown in Figure 23. In this case the model from Figure 22
is placed within a new model, the electric port is attached to a frequency boundary condition and
if we double click the natural gas turbine icon the table on the left pulls up where the control
system can be selected and values can be imported for system size and maximum power output.
Once this control system is selected the model is now ready to begin model preparation for
FMI/FMU exportation. Note: the control system selected will be the control system exported
with the FMI/FMU.
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Figure 23. Correct level from which to begin FMI/FMU preparation. Control system has been selected via
the drop-down menu available in the custom parameters section, shown on the left. (Red dots are
electrical flow ports).

Adaptors

Now that the proper model has been created, the variables designated to come from outside
the FMU must be declared as a real “input” or “output” variables, as demonstrated in Figure 6.
To accomplish this, the adaptors can be employed in the manner previously outlined. For the
natural gas turbine example illustrated in Figure 23, the electric port must be converted into real
inputs/outputs using the PowerFlowToFrequency adaptor described in the previous section. In
addition, the control system of the natural gas turbine requires a top-level demand signal to
communicate the grid demand at each time interval. To implement such communication into the
model, an additional real input variable, “SES Demand,” was created. With the adaptor and new
input signal created, the model took the form depicted in Figure 24, and is ready for export as an
FMU. This procedure of using an adaptor to transform ports into their real input/output
components, and creating additional inputs/outputs for declared variables, works well for simple
models and models intended for use in model exchange mode. For complex models planned for
simulation in co-simulation mode, use of adaptors may prove challenging if the initialization of
the models is not well-defined. This is due to the explicit nature of co-simulation modeling.
Further details on this will be given in later sections of this report.
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Figure 24. Preparing a natural gas turbine to be converted into an FMU. The inputs into the system are the
peaking demand and the connection points for electricity backflow into the turbine model. The output is
the electrical power as a real value.

Export

Dymola offers several ways to export a model as an FMU, as shown in Figure 25. The FMU
can include three different types of export: model exchange, co-simulation using the CVode
solver, and co-simulation using various Dymola solvers.

In model exchange, the component model will be exported without a solver, as it is assumed
that the importing tool will provide the solver. For co-simulation models, CVode and Dymola
solvers can be exported with the component model for use within other models. In general,
CVode solvers are sophisticated enough for most models, and export can be selected in either C-
code or binary code, depending on the purchased Dymola license. In the event a particular
Dymola solver is required to compile a component model, the co-simulation export can only be
accomplished as a binary, thus protecting the proprietary solver information held by Dassault
systems. However, binaries are operating-system dependent, so care must be taken to ensure that
export of binary FMUs is conducted on the same operating system as the planned importing tool.
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Figure 25. Export settings from Dymola 2021x.

Import

Once the model has been exported and an FMU created, the model will be present as an .fmu
file. In the case of the natural gas turbine, it will be called “SES GTTP.fmu.” To import this file
in Dymola, click File - Open - Import FMU, as shown in Figure 26.

The FMU can be imported in either model exchange or co-simulation mode, as per Figure
27. This selection should be consistent with the export options included in the FMU. If the
desired import mode is different than the model of the original FMU, the imported FMU will
fail.

Including the “structured declaration of variables” option retains the structured file tree of
variables that were present in the original model, enabling the user to look inside the FMU as
though it were the original Dymola model. If this option is not selected, a single large list
featuring all the variables available for access will be made available to the user.
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Figure 26. Importing FMU steps in Dymola 2021x.
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Figure 27. Import settings from Dymola 2021x.
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Simulation

After the import step, the model can be used in place of the main component, as shown in
Figure 28. In the system, it is important to ensure that all materials, initial conditions, nominal
conditions, and parameter setpoints are consistent across the boundaries between the FMU and
the rest of the model. This is particularly important because FMUs take real inputs and provide
the surrounding model with outputs that have no physical constraint placed upon them. This
reduces the number of checkpoints that the underlying application program interface (API)s has
in order to ensure a consistent model. This places more onus on the engineers/researchers.

When using model exchange, the model will act similarly to the primary model, as the
equation set remains exposed to the underlying import tool solvers. Conversely, in co-simulation
mode, a specified “communication step” size must be selected, at which point the models will
export results for communication with the surrounding external models. Selecting a small
enough communication step to ensure that all the dynamics are captured is critical, but selecting
a time-step communication interval that is too small greatly reduces the system’s simulation
speed.

SES_FMU

duration=30 s " Functional
I I || Mock-Up >

Interface

frequencytoPowerFlowadapt pr

FMI 2.0 CS

Figure 28. Proper import and use of a co-simulation FMU in Dymola.
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SES_FMU in NHES.Systems.SecondaryEnergySupply.NaturalGasFiredTurbine Examples.GTPP_Test_FMI _e... ? X
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fmi_loggingOn v |
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Cancel Info

Figure 29. FMI settings for the natural gas turbine FMI/FMU in co-simulation mode. The communication
interval was every 0.12 seconds, with an internal solver tolerance of 1e-6. The internal solver was the
Dymola specific DASSL solver.

To test the FMU, the physical model was run in co-simulation, model exchange, and normal
Modelica-only mode. The resulting turbine output is illustrated in Figure 30. For the three
aforementioned modes, all the models converged to the same solution over the 60-second
simulation time, with real-time simulation speeds of 1.316, 0.147, and 0.064 seconds, respectively.
The co-simulation FMI settings are shown in Figure 29. In all cases, the simulation speeds are
slower for FMU representations. This can be attributed to the increased overall number of variables
that must be simulated due to the need for additional boundary blocks to accommodate real
inputs/outputs. In addition, for co-simulation, the limiter on simulation speed is directly impacted
by the communication step size and the nonlinearity of the coupled system. For example,
increasing the communication step size from every 0.12 seconds to every second reduces
simulation time from 1.316 seconds to 0.514 seconds. However, as demonstrated in Figure 30, this
comes at the price of accuracy. Therefore, it is essential that, for co-simulation models, the
communication step occur at points with slow-moving physics in order to allow the system a larger
communication step size.
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Figure 30. Comparison of Dymola model results to co-simulation and model exchange FMU results.
Communication intervals for co-simulation = 0.12 seconds and 1 second.

3.3 Turbine Replacement Example

The creation of FMUs makes it possible to take a model from one coding language and
encapsulate it in a standardized format for use within another coding language. To test this
functionality with the more complicated fluid equation set of water, a natural circulation small
modular reactor (SMR) set was chosen. The modeling set, shown in Figure 32, includes the
reactor, energy manifold, turbine generator, and electric grid—all modeled in the Modelica
language. The turbine generator set was then converted from a Modelica model into an FMU to
ensure that all the proper data were input into and transferred between the models. The initial
step was to implement the adaptors (discussed in the previous section) that transform the fluid
ports into constituent real outputs, as shown in Figure 31. The progression of translation is
shown in Figure 32, going from the Modelica-only model to a model exchange FMU that is then
included in the model.
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Figure 31. Translation of the Modelica turbine generator model into an FMU-ready design.

The control system within the turbine generator model is maintained through the translation
process and can fulfill the desired setpoints within the turbine model. Then, the model is
exported into a model exchange FMU and reimported into the Modelica framework. A
comparison of the turbine power output is depicted in Figure 33, showing that the different
versions of the model are in close agreement with each other. The differences can be attributed to
minute variations in initialization subroutines that occur in the initialization phase of the run. The
FMU-based results and input-based Modelica results are nearly identical, and both simulations
were able to meet the turbine demand setpoints. It is worth noting that a version using co-
simulation was attempted, but instabilities arising from the explicit time-stepping scheme could
not be overcome; thus, the co-simulation was deemed unsolvable. Such scenarios become more
common as the complexity of the models increases. While co-simulation is the easiest version of
FMI to implement, instabilities such as these also increase the possibility of simulation
roadblocks.
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4. HYBRID REPOSITORY

At the beginning of the IES Project, a version control repository was delivered in order to
provide a common location for the deployment of system and component models and analyses
developed and constructed with Modelica/Dymola and RAVEN. To initiate the construction of a
flexible plug-and-play Modelica/RAVEN framework for IES analysis, a restructuring of the
version control repository (HYBRID, available at https://hpcgitlab.inl.gov/hybrid/hybrid and at
the open-source repository location https://github.com/idaholab/HYBRID) was performed.

The following main tasks were performed for this specific activity:

o Usage of the RAVEN regression test system (named ROOK) for deployment of a single,
integrated testing platform for both Modelica and Dymola models/analysis and RAVEN
workflows. The testing system was linked with the automatic continuous integration tool
for the automatic testing of the models and analyses when new modifications are added in
the repository.

o Folder structure optimization for easier browsing and usage of the version control
repository.
Figure 34 shows the new repository structure, with the following main folders identifiable:

e Models: contains the Modelica and Dymola models

e archive: where old examples and analyses (i.e., documents, models, input files, etc.) are
archived and stored to guarantee reproducibility of published results

e developer_tools: contains utility scripts, methods, and files required for the automation,
deployment, and verification of the tools and software products of the HYBRID
repository. This folder contains all the scripts for the automatic generation of software
quality assurance (SQA) documentation (e.g., requirements, traceability matrix, etc.).

e scripts: contains scripts for installing the HYBRID repository (e.g., scripts to create the
HYBRID configuration file). It also contains specialized classes and scripts for the
automatic regression testing system (e.g., output checkers) and Python-based launchers
for Dymola models (dymola_launcher).

e tests: contains all the tests that are automatically executed by the continuous integration
system and are locally executable by running the command “run_tests.”

e TRANSFORM:-library: submodule of the Oak Ridge National Laboratory based
TRANSFORM library that provides base models for many of the integrated energy
systems models

e raven: links to the RAVEN repository.

31


https://hpcgitlab.inl.gov/hybrid/hybrid
https://github.com/idaholab/HYBRID

Name

& .gitlab

& Models

@ archive

& developer_tools
@ doc

& scripts

B tests

® TRANSFORM-Library @ d735¢ccc3
@ raven @ cdé7dbal
< .gitignore

< .gitmodules

5 OOREADME.txt

5 LICEMSE.txt

B NOTICE.txt

M+ README.md

5 run_tests

Last commit

issue and MR templates added

Cleanup of File Tree and removal of broken ...

added licens

added RTR scripts

Update manual

added headers

added rts+srs + modified tests file to add re...

update of submodules

update of submodules

Changing the .gitignore file to not ignore .m...

added transform submodule

Civet test dirtectory set-up

added licens

added licens

added licens

added headers

Last update

3 years ago

2 weeks ago

1 meonth ago

3 weeks ago

%]

weeks ago
1 menth ago
3 weeks ago
2 months ago
2 months age
7 months ago
9 months age
4 years ago

1 menth ago

1 menth ago

1 menth ago

1 meonth ago

Figure 34. New structure of the repository.

Furthermore, a series of Modelica tests has been added to test the system-level interactions in
the NHES Modelica repository. An example output of the regression system is shown in Figure
35.

Table 1. Synopsis of Modelica test cases.

Test Description
Bouncing Ball Simple test that models a bouncing
ball hitting the ground.
BOP Boundaries Test A Balance of plant system based on
pressure difference
BOP Boundaries Test B Balance of plant system based on

forced mass-flow rate

Desalination 1 Pass Single-stage reverse osmosis

component check
Desalination 2 Pass Second stage reverse osmosis
component check
Desalination 2 Pass Mixing Two-stage reverse osmosis with

mixing
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Desalination Reverse Osmosis

Module
Desalination NHES Basic

Desalination NHES Complex

FMI Fluid CS
FMI Fluid CS

FMI Heat CS Capacity

FMI Heat CS Conduction

FMI Heat ME

Generic Modular PWR
GTTP_Test

HTSE Power Test

HTSE Steam Test

Hydrogen Turbine Test

NSSS_test

Simple_Breakers_Test

SMR_4Loop

SMR Primary Test

SMR Nominal Test

33

Fully encapsulated two-stage reverse
osmosis with mixing

Controlled desalination NHES
system

Controlled via signal bus NHES RO
system with parallel osmosis units

Test of the fluid adaptors in a small
problem in co-simulation mode

Test of the fluid adaptors in a small
problem, using model exchange

Test of the thermal adaptors in a
small problem in co-simulation
mode, using a thermal capacitance
model

Test of the thermal adaptors in a
small problem in co-simulation
mode, using a heat conduction model

Test of the thermal adaptors in a
small problem in model exchange
(solving both the conduction and
capacitance models simultaneously)

SMR of a NuScale size system with
a pump

Gas turbine load follow test — 60-
second electric demand oscillation
High Temperature Steam
Electrolysis (HTSE) NHES system
based on power input control
HTSE NHES system based on steam
and power input control

Hydrogen turbine load follow test —
60-second electric demand
oscillation

Westinghouse-style four loop PWR
test — 10,000 seconds at nominal
power

Test of electrical breakers on an
infinite grid

Test of load following a natural-
circulation SMR — 5-hour load
follow simulation

Test of the primary loop of a natural-
circulation SMR loop

Addition of nominal power test for a
natural-circulation SMR reactor



Step-Down Turbines

Step-Down Turbines Complex

Supervisory Control Test

Test_Battery_Storage

Test_Thermal_Storage

TightlyCoupled_FY18_Battery

Tightly Coupled_FY18_TES

Thermocline Cycling Test

Thermocline Insulation Test

Basic set of step-down turbines

Test of a more complex step-down
turbine system

Test of the supervisory control
system for receiving input from
external files

Test of a simple electrical battery
system — logical power flow
simulation

Test of a Therminol-66 thermal
energy storage facility through both
charge and discharge cycles

Complex system of systems from the
2018 case (including electric battery
storage)

Complex system of systems from the
2018 case (including thermal energy
storage [two-tank sensible heat])

Test of the hourly cycling of a
single-tank packed-bed thermocline
system

Test of the insulation heat loss
through the tank walls of a single-
tank packed-bed thermocline system

While these tests are not exhaustive of the Modelica repository system, they provide a
systems-level understanding of the repository model state. Other tests will be added on an as-

needed basis.
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Figure 35. An example of tests run in the ROOK regression system.

Other capabilities besides tests were added to the regression system in order to allow for
smoother cross-platform and cross-machine compatibility. These capabilities were necessary
because the commercial platform Dymola by Dassault systems has a series of settings that
control the type of outputs sent to the final solution file. Ensuring that every user has the same
flags turned on/off is unrealistic, since some of the flags are global settings turned on for every
simulation loaded into their particular instantiation of Dymola. To get around this, the ROOK
testing system added the capability to only look at those time steps or time intervals guaranteed
to be included in each simulation of the model, regardless of the flags automatically loaded by
Dymola. To accomplish this, an extra option (either “numberOfIntervals” or “OutputInterval”) is
required in the simulateModel command in the regression system. The option numberOfIntervals
tells Dymola how many output intervals to make, whereas OutputInterval tells Dymola at what
time-step interval an output should be present for comparison. These can be selected in the
Simulation Setup tab of the Dymola graphical user interface (GUI).

Further, a restart file loading capability was added to the Modelica regression system. This
was included because, for complex models, the initialization phase of a simulation can require
the Modelica solvers to spend a significant amount of time finding an initialization point. This is
due to the highly nonlinear nature of the underlying physical equations. One way to avoid such
situations is to provide a restart file to bypass the initialization phase of the simulation. A restart
file is automatically created at the end of each simulation; this is the dsfin.txt file created in the
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folder from which the simulation was run. This file includes the final values of the previous
simulation, from which the new model can restart. Moving this file to the tests/reference folder
and loading it into the regression system can save a substantial amount of time in regression
testing and provide a consistent starting point for each test, rather than relying on the same
initialization point being found during each regression testing cycle. Full details on how to utilize
and create new regression tests can be found on the HYBRID wiki at
https://hpcgitlab.inl.gov/hybrid/hybrid/wiki or at its open-source location,
https://eithub.com/idaholab/HYBRID/wiki).

The work covered in this report was propaedeutic for releasing the modeling framework in
the open-source community. Several activities were deployed for open-sourcing of the software:

e User documentation:

Development of an extensive user manual [9], providing a detailed description of the
models (Modelica and Dymola) and instructions on how to execute them

e SQA documentation (see Figure 36), available both in the INL internal Electronic
Document Management System (EDMS) and the GITHUB website under “./doc/sqa/”.
Such documentation is aimed at collecting the following information:

Project planning information

High-level overview touching on our entire project and software development
activities.

Roles and responsibilities
Merge request workflow (e.g. code change requests)
Workflow diagram
Software development plan
Documentation of references to other relevant plans and procedures
Information about the software safety and quality level determinations
Definitions of software validation and verification
Methods and procedures for software validation and verification.
And it is composed of the following set of documents:

o HYBRID Software Quality Assurance Plan (PLN-6274) (detailing the SQA procedures
adopted for the development and lifecycle of the HYBRID software framework)

e HYBRID Software Configuration Management Plan (PLN-6274)
o HYBRID Software Test Plan (PLN-6274)

e HYBRID IT Asset Maintenance Plan (PLN-6274)

o HYBRID Verification and Validation Plan (PLN-6274)

o HYBRID Software Design Description (SDD-561)

o HYBRID Software Requirement Specification (SPC-2990)
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e HYBRID Traceability Matrix (SPC-2990)
e HYBRID Configuration Item List (LST-1296).
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Figure 36. Status of the required SQA documentation for the HYBRID modeling repository.

5. DEPLOYMENT OF A RAVEN FMI/FMU DRIVER

Previous milestone reports [10],[11] demonstrated the successful execution of the FMIs and
FMUs using external Python-based frameworks (FMPy [12] and PyFMI [13]). Such showcasing
provided the basis for implementing the FMI and FMU interfaces within the RAVEN
framework. The following sections offer a brief overview of the RAVEN code and the
implementation of the driver for FMI/FMU-based models.

5.1 RAVEN Introduction

RAVEN is designed to perform parametric and probabilistic analyses based on the response
of complex system codes. RAVEN can be used to investigate the system response—as well as
the input space—using Monte Carlo, grid, or Latin hypercube sampling schemes, but its strength
lies in the discovery of system features, such as limit surfaces, identifying and separating regions
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of the input space leading to system failure, and using dynamic supervised learning techniques.
RAVEN includes the following major capabilities:

e Sampling of codes for uncertainty quantification and reliability analyses
e Generation and use of reduced-order models (ROMs) (also known as surrogate models)
e Data post-processing (time-dependent and steady-state)

e Time-dependent and steady-state statistical estimation and sensitivity analysis (mean,
variance, sensitivity coefficients, etc.).

The RAVEN statistical analysis framework can be employed for several types of
applications:

e Uncertainty Quantification

e Sensitivity/Regression Analysis

e Probabilistic Risk and Reliability Analysis
e Data Mining Analysis

e Model Optimization.

RAVEN provides a set of basic and advanced capabilities that range from data generation to
data processing and data visualization. Its mission is to provide a framework/container of
capabilities that engineers and scientists can use to analyze system responses, physics, and multi-
physics by employing advanced numerical techniques and algorithms.

RAVEN was conceived with two major objectives in mind:
e To be as easy and straightforward as possible for scientists and engineers to use

e To allow for straightforward expansion of itself by providing clear and modular APIs
(Application Programming Interfaces) to developers.

The RAVEN software is meant to be approachable by any type of user (computational scientists,
engineers, or analysts). Every aspect of RAVEN was driven by this singular principle, from the
build system to the APIs to the software development cycle and input syntax.

The main idea behind the RAVEN software design remains the creation of a multi-purpose
framework characterized by high flexibility with respect to the possible performable types of
analyses. The framework must be able to construct the analysis/calculation flow at run-time,
interpret the user-defined instructions, and assemble the different analysis tasks following a user-
specified scheme.

5.2 RAVEN Models

In RAVEN, coupling of the system to physical models is performed by the model entity API.
The model entity represents a “connection pipeline” between the input and output spaces. The
RAVEN framework (see Figure 37) provides APIs for the main model categories described
below.

e Codes: The Code model represents the communication pipe between the RAVEN framework
and any system and/or physical code/model. The communication between RAVEN and any
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driven code is performed through the implementation of interfaces directly operated by the
framework. The procedure for coupling a new code/application with RAVEN is a
straightforward process. The coupling is performed through a Python interface that interprets
the information coming from RAVEN and translates them to the input of the driven code.
The coupling procedure does not require modifying RAVEN itself. Instead, the developer
creates a new Python interface that will be embedded in RAVEN at run-time (no need to
introduce hard-coded coupling statements). If the coupled code is parallelized and/or multi-
threaded, RAVEN will manage the system in order to optimize the computational resources
of both the workstations and High-Performance Computing systems.

Y

External Codes ; Ensemble Model
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External Models Hybrid Model Post Processors
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Run1
"| External storage
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Figure 37. RAVEN framework scheme.

o Externals: The External model allows the user to create, in a Python file (imported at
run-time into the RAVEN framework), its own model (e.g., set of equations representing a
physical model, connection to another code, and control logic). This model will be
interpreted/used by the framework and, at run-time, will become part of RAVEN itself.

e Reduced Order Models (ROMs): Reduced order, Al-based surrogate models, are a
mathematical representation of a system, used to predict a physical system’s selected output
space. The “training” is a process that uses sampling of the physical model to improve the
ROM’s prediction capability (i.e., the capability to predict the status of the system given a
realization of the input space). More specifically, in RAVEN, the ROM is trained to emulate
a high-fidelity numerical representation (system codes) of the physical system.
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e Hybrid models: The HybridModel can combine ROMs with any other high-fidelity model
(e.g., Code or ExternalModel). The ROM will be “trained” based on the results from the
high-fidelity model. The accuracy of the ROM will be evaluated based on the
cross-validation scores, and the validity of the ROM will be determined via local validation
metrics. After the ROM is trained, the HybridModel can decide which model (i.e., the ROMs
or high-fidelity model) to execute, based on the accuracy and validity of the ROMs in a
particular operating region.

o Ensemble models: The EnsembleModel is used to create a chain of Models whose execution
order is determined by the Input/Output relationships among them. If the relationships among
the models evolve in a non-linear system, a Picard’s Iteration scheme is employed.

e Postprocessors: The Post-Processor model represents the container of all the data analysis
capabilities in the RAVEN code. This model is used to process the data (e.g., derived from
sampling of a physical code) in order to identify representative Figures of Merit. For
example, RAVEN uses Post-Processors to perform statistical and regression/correlation
analysis, data mining and clustering, reliability evaluation, topological decomposition, etc.

e RAVEN FMI/FMU Driving System Development.

Development of the FMI/FMU driving system is based on the ExternalModel entity in
RAVEN. As briefly reported in the previous section, the external model (see Figure 38) enables
developers to create, in a Python module or platform, a direct coupling with a model coded in
Python (e.g., a set of equations representing a physical model, connection to another code, and
control logic). Once the external model is constructed, it is interpreted and used by RAVEN,
ultimately becoming, at run-time, part of RAVEN itself.

RAVEN

4 | N

u External Python
Model
v (e.g. PyFMI)

Python
Environment

N /

Figure 38. External model API.
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class FMIFMU(ExternalModelPluginBase):

def run(self,container,inputs)

def readExtInput (self,container,xmlNode)

def initialize(self,container,runinfo,ocinputs)

def createNewInput (self,container,inputs,oinputs,samplerType, **Kwargs)

Figure 39. FMI/FMU model skeleton in RAVEN.

The ExternalModel API (ExternalModel plugin) was used to develop, in RAVEN, a native
driver for models using the FMI/FMU protocol. Figure 39 shows a snapshot of the “wrapper”
that was developed. The “FMIFMU” RAVEN model implements a generalized method—based
on the RAVEN API and syntax—to import, execute, and process the results of any model
compatible with the FMI/FMU standard. The model consists of the following methods:

- run: The run method (the only required method in the API) aims to execute the FMU
(FMI) for a given input coordinate (or input perturbation). The run method represents
the pipeline between RAVEN and the FMI/FMU model. The method both executes and
collects the results that will be then stored in the object “container,” ready for processing
by RAVEN.

- readExtInput. This method is in charge of reading the user-define input for the
FMI/FMU that needs to be driven. It collects the following information (expandable in
the future, if needed):

startTime: The start time of the driven FMU (e.g., 0.0 seconds)

e stopTime: The stop time of the driven FMU (e.g., 60 seconds)

o stepSize: The time step size to use for the calculation (e.g., 1.e-2 seconds)
e inputVariables: A list of the input variables (e.g., demand)

o outputVariables: A list of the output variables (e.g., power level)
JfmuFile: The FMU location (e.g., /path/to/myFmu.fmu)

- initialize: This method is invoked right before the model is executed. This method aims
to load the FMI/FMU, instantiate the class, and initialize its settings.

This method is also in charge of performing error checking of the user-defined
settings/options.

- createNewInput: This method, in case of a sampling strategy, is responsible for
translating” the RAVEN info (e.g., the values of sampled variables) into the FMI/FMU
syntax.
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Figure 40. FMI/FMU co-simulation protocol coupled with RAVEN.

Depending on the type of protocol for the FMI or FMU of interest, two coupling schemes in
the FMIFMU wrapper were developed. Both schemes are encapsulated in the same wrapper and
are executable via the model API in RAVEN.

Figure 40 shows the coupling scheme for FMIs/FMUs when the co-simulation protocol must
be used; RAVEN interacts with the different models via the FMIFMU wrapper that uses FMPy
to import and interact with the FMUs. In this coupling scheme, RAVEN “perceives” the models
imported via FMIs/FMUs just as it would any other external model or code. This protocol is
indicated when the models to connect are loosely coupled (multi-physics feedbacks are not
strong and/or the physics dynamic of the different models act on different time scales, e.g.,
seconds vs. hours or days).

On the other end, Figure 41 shows the coupling scheme for FMIs/FMUs when the model
exchange protocol is used; in this configuration, RAVEN can directly interact with the universal
solver that aims to solve all the models (compatible with the FMI/FMU protocol, in this case
Dymola). This coupling scheme is preferrable when the models are highly nonlinear and the
models are tightly coupled with fast moving dynamics.
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Figure 41. FMI/FMU model exchange protocol coupled with RAVEN.

<Models>
<ExternalModel name=“fmu” subType=“FMIFMU">
<variables> demand, time, SES_generato:_E_flow</variables>
<startTime> 0.0 </startTime>
<stopTime> 14400</stopTime>
<stepSize> 1.0 </stepSize>
<inputVariables> demand </inputVariables>
<outputVariables> SES generator P flow</outputVariables>
<fmuFile> GTTPfmu.fmu </fmuFile>
</ExternalModel>
</Models>

Figure 42. External model FMIFMU example RAVEN input file.

Figure 42 shows an example of the portion (in XML) of the RAVEN input file required to
use the FMIFMU wrapper. This XML block is the one processed by the previously-described
method “readExtInput.”. Independently on the type of FMI/FMU that the model will import and
use, the input file specifications do not change; the FMIFMU wrapper will collect the
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information (co-simulation or model exchange) directly from the FMU (i.e., the <fmuFile>)
after loading.

6. DEPLOYMENT OF RAVEN FMI/FMU EXPORTER FOR AI-BASED
ANALYSIS ACCELLERATIONS

As described in the previous section, the RAVEN framework provides APIs for different
model categories, among which are the ROM, Al-based algorithms. In order to deploy the
acceleration of IES analysis, the ROM (Al entity is key. Indeed, the ROM is aimed at higher
fidelity surrogate and system simulator-based models (for specific and limited operational
domain) with a set of faster-execution equations that allow for the prediction of Figures of Merit
(of interest) in a span of milliseconds.
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Figure 43. Construction process for surrogate models in RAVEN.
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6.1 RAVEN Al construction

Figure 43 illustrates the standard process of constructing (via optimization) RAVEN
surrogate (Al) models. The surrogate model of interest is trained on a dataset, and its hyper-
parameters (i.e. parameters and characteristics of the surrogate model of interest) are tuned to
maximize the accuracy in predicting the figure(s) of merit (FOMs) of interest. As shown in
Figure 44, the accuracy is assessed by applying statistical methodologies (i.e., cross-validation),
which consists of randomly portioning the dataset into “training” and “testing” datasets. The
“training” dataset is used for constructing the surrogate model, and its prediction is compared
with the “testing” dataset. The prediction accuracy is then assessed using distance metrics (e.g.,
R2 score) between the surrogate model and the testing dataset.

T s
Train (X, Uy) Test (X,
-

Folds

l L l X,

Surrogate vy Surrogate Vi
Model Model

i

i [
?
Ea

Dataset p, Dataset v, Dataset p; Dataset v,
Metric Post-Processor Metric Post-Processor
{ Distance Metric J { Distance Metric J
d,(p,v) d,(p.v)
d(p,v)

Figure 44. RAVEN ROM cross-validation scheme.
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The so-constructed surrogate models allow for fast evaluation of the dynamics (or steady
state) of the FOMs of interest. Therefore, such models can accelerate analyses (greatly reduce the
computational time), by replacing high-fidelity physical models with a ROM representation.

6.2 Development of FMI/FMU exporting capabilities for RAVEN Al

To exploit RAVEN Al capabilities, a workflow to export trained (constructed) ROMs using
the FMI/FMU protocol was developed in RAVEN.

The exporting of RAVEN Al is performed according to the following two steps:

1) Exploit the native RAVEN serialization system, which is responsible for serializing (i.e.,
saving in a binary file) already-trained surrogate models that can be loaded in external
(Python-based) packages (outside RAVEN).

2) Use and extend the PythonFMU library (https://github.com/NTNU-IHB/PythonFMU)),
which is a lightweight framework that enables the packaging of Python 3 code as co-
simulation FMUs (following FMI version 2.0).

To deploy any model in an FMI/FMU-compatible framework, that model (i.e., ROM) must
be able to be inquired at each “time step,” meaning that the model must allow for execution as an
integrated model and not as a “black-box simulation”. To achieve this goal, the RAVEN ROM
APIs were upgraded by implementing a “method” to solve the surrogate model at each time step.
This modification, in conjunction with the two steps reported above, allows for RAVEN ROM
models to be exportable as FMI/FMUs.

Once the RAVEN Al is trained following the standard process reported in section 6.1, it can
be finally exported following the steps reported in Figure 45. An example of the RAVEN input
blocks is reported in Figure 46, where:

- In the <Models> node, the RAVEN ROM (Al) is shown.
- In the <Files> node, the output FMI/FMU filename is specified.

- Inthe < S7eps> node, the trained ROM (input) is exported as FMI/FMU (output).
Model “ RAVEN
RAVEN | (ROM, ExternalModel) _ Serialilzation

" RAVEN iali :
Serialized Model
RAVEN Model*EXPO"te" +«— FMU/FMU Binary File (*.pk)
FMI/FMU (*.fmu) Exporter ~ _

Figure 45. RAVEN Al FMI/FMU exporting process.
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<Models>
<ROM "GTTProm" "SciKitlLearn">

</ROM>
</Models>

<Files>
<Input "FMU" "fmu"> GTTProm.fmu </Input>
</Files>

<Steps>
<IOStep "romDump" >
<Input "Models" "ROM"> GTTProm </Input>
<Output "Files" e > FMU </Output>
</I0Step>
</Steps>

Figure 46. Example RAVEN input file to export Al as FMIs/FMUs.

The FMI/FMU exporting capability allows for the deployment of the scheme reported in
Figure 47, where the RAVEN models can be used, as FMI/FMUs, in tandem with any
Dymola/Modelica (in general) and HYBRID (in particular) physical models.

Exporting Available DYMOLA

Exporting under development

Export FMI/FMU using Dymola

RAVEN HybridModel “

FMI/FMU -> RAVEN

Export FMI/FMU :
HybridModel

RAVEN ExternalModel

using PythonFMU in RAVEN ExternalModel
RAVEN trained Al RAVEN

RAVEN trained Al

PythonFMU

Figure 47. RAVEN’s current FMI/FMU exporting capabilities.
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Figure 48. RAVEN hybrid model scheme.

6.3 Future Extension of the FMI/FMU Exporter to the RAVEN Hybrid
Model

In previous sections, the creation and export of RAVEN Al was discussed. ROM usage is an
approach that can drastically reduce the computational time of analyses and accelerate
deployment of models. To obtain the optimal prediction capability, the ROM must be
constructed and applied only within the domain of its training set; in other words, the ROM can
guarantee valid predictions only within (or slightly outside) the boundaries of its training set. For
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example, if a ROM is trained by perturbing a temperature between 500 and 600 K, the ROM
should not be used for predicting a system response at 1000 K.

RAVEN includes an advanced capability called the “hybrid model” to tackle this problem.
Indeed, this model is a special class of algorithms aimed to couple in-tandem, high-fidelity
physical and mathematical models (e.g., FMI/FMU Dymola models) and Al algorithms (e.g.,
ROM, Al). The Al is trained based on the results from the high-fidelity model. The global
accuracy of the Al is evaluated based on cross-validation scores, and the local (e.g., prediction)
validity is determined via certain local validation metrics (i.e., metrics aimed to assess the
confidence of the Al predictions). Once the Al is trained, the hybrid model can decide which
model (i.e., the Al or high-fidelity model) to execute, based on the aforementioned accuracy and
validation metrics. Figure 48 shows the scheme behind the hybrid model formulation. Since the
predictions of the surrogate model are assessed in terms of accuracy, this algorithm discards
ROM predictions if they fall outside its training set boundaries or the response confidence is too
low. In such cases, the high-fidelity model is used and the ROM training set updated.

In the next steps for this program, the “hybrid model” capability will be leveraged in tandem
with the FMI/FMU exporting protocol in order to accelerate the execution of systems that
include multiple FMI/FMUs, allowing for the deployment of models that are able to
autonomously switch between RAVEN Al and Dymola models during analyses. Each FMI/FMU
will be coupled in a hybrid model configuration, resulting in accurate modeling and CPU time
saving.

7. Integrated Energy Park Demonstration Case

To demonstrate the full range of capabilities described in this report, a final test case on an
integrated energy park was conducted. The integrated energy park, shown in Figure 49, consists
of a nuclear reactor, electric batteries, and a natural gas turbine. The natural gas turbine is the
component to be exported as an FMU. The natural gas peaking turbine will then be replaced with
its own FMU from three different sources: the Dymola FMU in both model exchange and co-
simulation, then a RAVEN-based surrogate using co-simulation mode.
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Figure 49. Integrated energy park consisting of a nuclear reactor (NPP), Energy Manifold (EM), Balance
of Plant (BOP), Switch Yard (SY), Electric Batteries (Battery), Infinite Grid (IG), and a Natural Gas
turbine (NG). The natural gas turbine is to be exported as an FMU.

7.1 FMI/FMU Creation and Use within Dymola

As outlined in earlier sections of this report, the natural gas turbine model needs to be
modified with an electric power adaptor and an input demand signal in order to ensure that all
the variables contained in the flow ports are realigned into real input/output variables.

The adaptors outlined in the previous sections can be used to accomplish these modifications.
For the natural gas turbine example, illustrated in Figure 50, the electric port must be converted
into real inputs/outputs using the PowerFlowToFrequency adaptor previously described. In
addition, the control system of the natural gas turbine requires a top-level demand signal to
communicate the grid demand at each time interval. To implement this communication into the
model, an additional real input variable, “SES Demand,” was created. With the adaptor and the
new input signal created, the model is ready to be exported as an FMU.

This procedure of using an adaptor to transform ports into their real components and creating
additional inputs/outputs for declared variables works well for simple models and models
intended to be used in model exchange mode. For complex models planned for simulation in co-
simulation mode, use of adaptors may prove challenging if the initialization of the models is not
well-defined. This is due to the explicit nature of co-simulation modeling.
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Figure 50. Preparing the natural gas turbine for conversion into an FMU. The inputs into the system are
the peaking demand and connection points for electricity backflow into the turbine model. The output is

the electrical power as a real value.

Once the model has been exported using the Dymola interface, it can then be re-imported
into the program and can replace the natural gas turbine model. Since the FMI consists of three
inputs and one output, the three inputs must be specified by the user. To accomplish this, the
FrequencytoPowerFlow adaptor was placed in the Modelica model along with a “real”
expression to connect the turbine demand to the FMI/FMU, as shown in Figure 51.

Using this version of the FMI/FMU, three separate 5-hour simulations were run: one with
Modelica-only input, one with a co-simulation version of the gas turbine, and one in model
exchange mode. The results of this simulation set are depicted in Figure 52. Over the course of
the full 5-hour simulation, the results are all in near-perfect agreement with the setpoints, with
the model exchange and Dymola results being basically identical, and co-simulation being only
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as accurate as the communication step of 1 second would allow. However, of note is that, while
the Dymola and model exchange versions of the model completed in 121.3 and 156 seconds,
respectively, the co-simulation model took far longer to solve (a total of 642 seconds). This
increased simulation time can be attributed to the additional communication time between the
models as well as the additional initialization routine required by the solvers.

gTTP_elec_fmu

realExpression

,
e . .
SC.W_totaiSetpoint_SES l ' I 1 [E«'Iuonccl:.lagal
Interface

Fle o FMI 2.0 CS

Figure 51. Integrated energy park consisting of a nuclear reactor, electric batteries, and a natural gas
turbine replaced by a co-simulation FMU.
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Figure 52. Top) Five-hour simulation of the natural gas turbine power vs. setpoint demand for the
integrated energy park in regard to Modelica-only model, co-simulation FMI, and model exchange FMU.
Bottom) Closeup shot of the turbine demand vs. turbine output for the different FMI versions. Note that
all agree reasonably well. Co-simulation communication interval = 1 second.

53



7.2 Creation of Surrogate Using RAVEN

Due to the large increase in simulation time, the relative issues with co-simulation
initialization routines, and the fact that there is no feedback to the rest of the grid, the FMI
created for use in the RAVEN surrogate training was reduced to having only a single input
(turbine demand) with no connected outputs. This setup allows the natural gas turbine to keep all
the initialization pieces of the “infinite” grid self-contained, thus drastically improving the
initialization routine and system robustness. Since the turbine power is a variable given by the
FMU, and no feedback is used in other units’ control systems, the turbine power was not
required to be an external variable for the initial export. The FMI/FMU (GTTP.fmu) exported to
RAVEN is shown in Figure 53.

gTTP_fmu

demand_SES

m' Functional
| Mock-Up

Interface

GTTP_fmu gTTP_fmu

Figure 53. Simplified model of the FMI for RAVEN surrogation.

To construct a RAVEN-based Al to surrogate the response of the turbine component, the
FMIFMU RAVEN importer described in Section U was used to drive the Dymola-exported
FMI/FMU model.

Since the turbine’s response to changes in the demand is very quick (very limited inertia) and
almost perfectly linear, a Support Vector Regressor with linear kernel Error! Reference source n
ot found. was selected for surrogating the response. The turbine FMI/FMU GTTP.fmu was
loaded via the FMIFMU RAVEN importer and its demand sampled (1,000 Monte Carlo
samples) between 0 and 35 MW to capture the model’s full domain of variability. Finally, the
Support Vector Regressor was trained (constructed) and exported to a “brand-new” FMI/FMU
(GTTProm.fmu) by the RAVEN FMI/FMU exporter (co-simulation), as described in Section 6.2.

To validate the RAVEN Al FMI/FMU, a cross-validation assessment was performed in
RAVEN, and, due to the pure linearity of both the turbine and Al models, its average R2 score
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was >0.99. This is further demonstrated in Figure 54 and Figure 55 which show a comparison of
the Dymola-generated turbine FMI/FMU and the RAVEN Al FMI/FMU, with the models
demonstrating good agreement.
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Figure 54. Comparison of the Modelica/Dymola GTTP.fmu response (P_flow) and the RAVEN Al-based
GTTProm.fmu.
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Figure 55. Closeup of the comparison of the Modelica/Dymola GTTP.fmu response (P_flow) and the
RAVEN Al-based GTTProm.fmu.

7.3 Comparison of Results

Section 7.2 described the process of constructing an AI model exported in an FMI/FMU from
RAVEN. To demonstrate the concept of the “plug-and-play” framework, along with the usage of
Al for accelerated analysis, the integrated energy park model was simulated, both using the
original Dymola model (FMI/FMU) for the gas turbine and using the RAVEN Al-based model.

Figure 56 shows the integrated energy park FMI/FMU exported via Dymola. Among the
different variables and outputs is the model fulfillment of the gas turbine model’s demand. Such
output represents the link between the IES park, and the turbine chosen for the demonstration.

Figure 57 and Figure 58 show the setup of the integrated energy park along with the detailed
Dymola FMI/FMU and the RAVEN Al-based FMI/FMU, respectively. Both models were
simulated in an ad-hoc Python code (master simulator) using the FMPy package.

Using the above-mentioned FMI/FMU setup, the two 5-hour simulations were run in the
master simulator (Python code using FMPy). Since the RAVEN Al-based FMI/FMU can be
evaluated in mere milliseconds, the simulation of the setup with the Al was much faster (~20%)
to complete, making the computation time for the turbine evaluation completely negligible;
indeed, the AI FMI/FMU almost zeroed out the CPU time for the turbine simulation, and the
totality of the CPU time was used to simulate the remaining systems in the integrated energy
park, which were more complex and computationally intensive.

Figure 59 and Figure 60 show a comparison of the turbine responses in the integrated energy
park using the Dymola FMI/FMU and the RAVEN Al-based FMI/FMU. Over the course of the
full five-hour simulation, all the results were in near-perfect agreement with the setpoints. The
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results show that the setup using the RAVEN Al FMI/FMU outperformed (in terms of speed) the
Dymola model, with no loss of accuracy.
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Figure 56. Integrated energy park (excluding the turbine) FMI/FMU generated with Dymola.
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Figure 58. Integrated energy park FMI/FMU, replacing the Dymola GTTP model with the RAVEN AlI-
based FMI/FMU.
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Figure 59. Co-Simulation FMI/FMU (Dymola) vs. RAVEN Al-based FMI/FMU for a 5-hour simulation
of the turbine power vs. setpoint demand for the integrated energy park.
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8. CONCLUSION

This report describes the status of the flexible plug-and-play framework development for
design, analysis, and optimization of integrated energy systems. This framework seeks to
integrate Modelica and Dymola with RAVEN in terms of both FMI/FMU construction and
repository structures intended to simplify model sharing and simulation of complex dynamic
systems.

The report provides an in-depth look at the alterations needed to modify existing system-
level models for exportation as FMUs. These alterations include modifying specialty “port”
variables into their constituent parts as real variables via a new FMI adaptor package added to
the existing HYBRID repository. This package includes new adaptors for electrical, fluid, and
heat ports for export into the FMIs/FMUs. Examples were included within the FMU adaptor
package, illustrating how to properly utilize the system. Several of these examples are discussed
in Section 2 of this report.

Simulation results demonstrate that, while minor differences may occur, the overall control,
trends, and solution integrity is maintained between the standard Modelica simulation and FMU
simulation results. However, it is worth noting that, for small systems, the FMU results have a
slower simulation time than the Modelica-only simulation. While this step-by-step process does
require several levels of checks, it provides a degree of system flexibility never before
experienced. Using this process, a company can provide models that contain proprietary
information to separate entities, without disclosing any information about the model that could
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be considered business sensitive. Such a capability would allow institutions to bypass the
necessity of having to “whitewash” data.

In addition to the investigative work being conducted on FMUs and FMIs, a series of updates
to the HYBRID repository regression system was completed to ready the repository for open-
sourcing. These updates include additional system-level tests for components in the HY BRID
repository, as well as increasing the testing level from a mere six tests to 32 and counting.
Further, new features have been included in the testing system, such as an initialization
subroutine for Dymola models that helps highly nonlinear complex systems initiate their
regression test. Additionally, the output keys “numberOflntervals” and “Outputinterval” were
added to the regression system, allowing for consistent comparison points between the reference
file and the simulation results between machines. This step is necessary because the commercial
Modelica platform Dymola has a series of global output flags that are rarely consistently utilized
from one organization to another, yet do not change the trajectories of the solution.

Finally, the work that was deployed to simulate, export, and use FMI/FMU in conjunction
with Al algorithms in RAVEN represents a significant step forward in regard to delivering a
streamlined process to accelerate simulations and analysis by leveraging RAVEN advanced
algorithms. The possibility of using Al exported in FMI/FMU in any FMI/FMU-compatible
framework (e.g., FMPy and Dymola) is unique to this framework, posing the basis for
deployment of fast simulation, modeling, and analysis accelerations.

Overall, extensive work was completed to develop FMUs and FMIs from existing models
and gaining greater understanding of the requirements and limitations of FMI/FMUs.

9. FUTURE WORK

The activities described in this report show the potential of the concept of a “flexible plug-
and-play ecosystem” being developed within the IES program and deployed via the creation of
FORCE. In order to fulfill the promises of FORCE, several tasks are planned to be carried out in
the future of the program:

1) Master Simulator development in RAVEN: in order to automate the deployment of
models in a system that is compatible with any FMI/FMU interface, an entity (Master
Simulator) needs to be developed within RAVEN. Such development will allow for the
simulation of FMI/FMU models (Al, Dymola, etc.) directly within the RAVEN
framework allowing for the integration of such models in any RAVEN workflow, in
general, and in IES technoeconomic analysis, in particular. The Master Simulator in
RAVEN will be based on the EnsembleModel entity (see sec. 5.2), in conjunction with
the FMPy library. The Master Simulator is shown in Figure 61.
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Figure 61. Proposed master simulator within RAVEN.

Model Exchange for RAVEN-based models: in section 6.2 the deployment of a system
for exporting RAVEN-based Al as FMI/FMU leveraging, the PythonFMU library has
been shown. However, the current library only supports FMI/FMU in co-simulation,
useful for loosely coupled models but inadequate for tightly coupled systems. To allow
for exporting of nonlinear models (e.g. Nuclear Reactor Balance of Plant, Storage, etc.),
the PythonFMU library needs to be upgraded to allow for exporting models in model
exchange and, consequentially, leverage the capability of RAVEN Al to provide first and
second order derivative information.

Integration of the FARM supervisory control model: Argonne National Laboratory, in
collaboration with Idaho National Laboratory, recently released a RAVEN plugin called
Feasible Actuator Range Modifier (FARM) [14],[15]. This plugin oversees deploying
supervisory bounding control for dynamic models to ensure physical limitations of the
model are not exceeded. This is an additional layer of control on top of the existing
physical modeling control systems. While control is still imposed for each individual
process, FARM can identify demand signals that cannot be met within safety limits and
augments the demand to meet safety specifications. For the FORCE framework to
deploy these supervisory controllers the model needs to be exported as FMI/FMU and
integrated into the plug-and-play framework.

Integration of the HERON plugin: INL has been developing the Holistic Energy
Resource Optimization Network (HERON) plugin to construct workflows for solving
resource allocation problems inherent to the electrical grid. This plugin oversees the
allocation of energy resources within integrated energy systems. The idea of FORCE is to
connect HERON with FARM, RAVEN, and HYBRID to solve real world energy
allocation problems. With the work completed in FY 2020 the next step is to develop the

62



interconnection between these different platforms and ensure simulation speed is capable
of solving real world problems.

Additional investigative work is planned in order to expand the FMU capabilities within the
existing HYBRID repository framework.
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1 Introduction

One of the goals of the HYBRID modeling and simulation project is to assess the economic via-
bility of hybrid systems in a market that contains renewable energy sources like wind. The hybrid
system would be a nuclear reactor that not only generates electricity, but also provides heat to
another plant that produces by-products, like hydrogen or desalinated water. The idea is that the
possibility of selling heat to a heat user absorbs (at least part of) the market volatility introduced
by the renewable energy sources.

The system that is studied is modular and made of an assembly of components. For example,
a system could contain a hybrid nuclear reactor, a gas turbine, a battery and some renewables.
This system would correspond to the size of a balance area, but in theory any size of system is
imaginable. The system is modeled in the ‘Modelica/Dymola’ language. To assess the economics
of the system, an optimization procedure is varying different parameters of the system and tries to
find the minimal cost of electricity production.

1.1 Modelica Models

Idaho National Laboratory (INL) has been developing the NHES package, a library of high-fidelity
process models in the commercial Modelica language platform Dymola since early 2013 [1], [2],
[3], [4]. The Modelica language is a non-proprietary, object oriented, equation-based language
that is used to conveniently model complex, physical systems. Modelica is an inherently time-
dependent modeling language that allows the swift interconnection of independently developed
models. Being an equation-based modeling language that employs differential algebraic equation
(DAE) solvers, users can focus on the physics of the problem rather than the solving technique
used, allowing faster model generation and ultimately analysis. This feature alongside system
flexibility has led to the widespread use of the Modelica language across industry for commercial
applications. System interconnectivity and the ability to quickly develop novel control strategies
while still encompassing overall system physics is why INL has chosen to develop the Integrated
Energy Systems (IES) framework in the Modelica language.

1.2 Individual Components

The current version of the NHES library employs both third party components from the Modelica
Standard Library [5] and TRANSFORM [6] and components developed internal to the project for
specific subsystems. For example, the NHES library contains a large variety of models for the
development of a high-temperature steam electrolysis plant, a gas turbine, a basic Rankine cycle
balance of plant, and a light water nuclear reactor. Components included in the library that sup-
port the development of these systems include 1-D pipes, pressurizers, condensers, turbines (steam
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and gas), heat exchangers, a simple logic-based battery, a nuclear fuel subchannel, etc. Third
party models include numerous additional models including source/sink components (e.g., fluid
boundary conditions), additional heat exchanger models, logical components for control system
development, multi-body components, additional supporting functions (e.g., LAPACK, interpola-
tion, smoothing), etc. Please see the specific libraries for additional information.

1.3 Hybrid Requirements

The repository itself can be found here: https://hpcgitlab.inl.gov/hybrid/hybrid

Software requirements are as follows:

1. Commercial Modelica platform Dymola—https://www.3ds.com/products-services/
catia/products/dymola/latest-release/.

2. Risk Analysis and Virtual ENviroment (RAVEN)—https://raven.inl.gov/SitePages/
Software%$20Infrastructure.aspx

3. Python3-https://docs.conda.io/en/latest/miniconda.html

4. Microsoft Visual Studio Community Edition. —https://visualstudio.microsoft.
com/downloads/

Note: Steps 3 and 4 can be accomplished by following the RAVEN installation instructions in
step two. The installation procedure will be outlined below. All physical models are run within
the Dymola simulation framework graphical user interface (GUI). Background information on the
Modelica as a language as well as good general guidance on coding practices can be found at the
two references shown below.

1. https://webref.modelica.university/

2. https://mbe.modelica.university/
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2 HYBRID Installation Procedure

2.1 Overview

The installation of the HYBRID repository is a straightforward procedure; depending on the usage
purpose and machine architecture, the installation process slightly differs.

In the following sections, the recommended installation procedure is outlined. For alternatives,
we encourage checking the RAVEN wiki. The windows 10 machine on which HYBRID is tested
and developed, uses the standard installation procedures outlined below.

The installation process will involve four steps:

* Installing prerequisites, which depends on your operating system;
¢ Installing conda;
¢ Installing RAVEN.

¢ Installing HYBRID.

2.2 Cloning the Hybrid Repository

The first step in installing the package is to clone the HYBRID repository. To do this, use

‘git clone git@hpcgitlab.inl.gov:hybrid/hybrid.git

This will download the repository into a folder called hybrid’. To go inside the folder, use

‘cd hybrid

Note: This only works if you have access to the HYBRID repository.

Note2: If you are outside INL, be sure you have the ssh tunnel to INL set-up. For instruc-
tions, please check the HPC GitLab Connectivity page.

Note3: Be sure to have the proxy settings correct. See RAVEN wiki .

Note4: An ssh key needs to be registered for hpcgitlab.inl.gov. This key should be good
for both, the HYBRID repository as well as the CashFlow plugin. Instructions to generate
and register ssh keys can be found here. If you have troubles accessing the repository, see
Installation trouble shooting.
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2.2.1 Install RAVEN and its plugins as a sub-module
The next step is to download and install RAVEN and the submodule (e.g. TEAL, HERON) plugins
as a sub-module of the HYBRID repository.

A submodule allows you to keep another Git repository in a subdirectory of your repository.
The other repository has its own history, which does not interfere with the history of the current
repository. This can be used to have external dependencies such as third party libraries for example.

In order to get RAVEN do the following in the hybrid folder

‘git checkout devel

Update the Branch

‘git pull

to add RAVEN as a submodule

‘git submodule update —--init --recursive

Install and Compile RAVEN. Once you have downloaded RAVEN as a sub-module, you
have to install it. go to the RAVEN Wiki for information about how to install it. Run all the tests
outlined in the RAVEN wiki.

2.2.2 Inform the Framework Paths

In order to set up the hybrid repository, you must inform the framework about the location of the
Dymola python interface. For doing so, navigate to the hybrid directory:

to add RAVEN as a submodule

‘cd <path to your hybrid repository>/hybrid

Run the following command:

‘ ./scripts/write_hybridrc.py -p DYMOLA_PATH

Where DYMOLAPATH is the path to the python interface egg folder in the DYMOLA instal-
lation locally. For example:

./scripts/write_hybridrc.py -p
"/c/Program\ _Files/Dymola\_2020x/Modelica/Library/
Cooeoobython_interface/dymola.egg"
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2.3 Setup of Dymola for the Regression Testing System

To properly setup the Hybrid repository to work with the regression system one needs to download
Dymola as mentioned above and activate the license. Once those two steps are complete the dy-
mola.mos file needs to be edited. The dymola.mos file is the file that tells Dymola what libraries
to load when the application is opening and where the working directory is located. For the auto-
matic regression test system to properly test the downloaded library the proper NHES library must
be loaded automatically by dymola in the dymola.mos file located at C:/Program Files/Dymola
2020/insert/dymola.mos for example. To properly run the tests the NHES and the TRANSFORM
libraries need to be automatically loaded by Dymola upon startup. This can be accomplished by
adding to the Dymola.mos until it looks something like:

RunScript ("$DYMOLA/ insert/displayunit.mos”, true);

definePostProcessing ("SDF_output”, “Convert_.result.file._to_SDF._format”,
”Modelica. Utilities .System.command(\”\\\”%DYMOLA%/bin/dsres2sdf\\\”
JRESULTFILE%.mat %RESULTFILE%.sdf \”)”);

openModel (”C:\ Users\FRICKL\ Desktop \ TRANSFORM3_20_2020\ TRANSFORM-
Library \TRANSFORM\ package .mo”); //Loads Transform package.mo

openModel (”C:\ msys64\home\FRICKL\ hybrid_devel\hybrid\models
~\NHES\ package .mo” );//Loads NHES package from hybrid directory

cd(”C:\ Users \FRICKL\ Desktop\ TESsystem™);
// Place where all the Dymola runs will occur.

Having the Dymola.mos file written like this will allow Dymola to automatically load all the
needed libraries for Regression testing when conducted using the Regression Test Harness. It
should be noted that typically the dymola.mos file will need its permissions to be changed to allow
a user to write this. On a Windows machine this is done by running as an administrator on the
system and changing the properties of the file to include “read and write” rights, as opposed to
“read-only” rights.

2.4 Run Regression tests related to the HYBRID project

Now that the dymola.mos file has been edited to automatically load the TRANSFORM and NHES
packages one can run all tests associated with the HYBRID repository. To do this follow the
instructions below.

cd <path to your hybrid repository>/hybrid
./run_tests -jX -1Y —--only-run-types 77
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where:

¢ ”X” is the number of processors to use for testing
* ”Y” is the maximum load to limit to execute tests

e 777" is the subtype of tests to be run. Currently only “raven” and ”dymola” are available.

If all tests need to be run, just execute the following command.

cd <path to your hybrid repository>/hybrid
./run_tests -jX -1Y

The output will look like the following:

#
# Testing of Hybrid RAVEN Modules (./run_tests)
#

/c/msys64/home /FRICKL/ cleaning _hybrid /hybrid
Found $DYMOLA_PATH and set to C:/Program Files/Dymola 2021/Modelica/Library/python_interface /dymola.egg
Loading raven_libraries conda environment

CONDA
... Run Options:

Mode: 1
Verbosity: 0
Clean: 0
Mode: CONDA
Conda Defs :

Loading RAVEN libraries ...
Detected OS as —os windows
Using Python command python
SRAVEN_LIBS NAME set through raven/.ravenrc to raven_libraries
. >> If this is not desired, then remove it from the ravenrc file before running.
>> RAVEN environment is named “raven_libraries™
found conda path in ravenrc: C:/Users/FRICKL/AppData/Local/Continuum/miniconda3/etc/profile.d/conda.sh
>> If this is not the desirable path, rerun with argument —conda—defs [path] or remove the entry from raven/.ravenrc file.
... Found conda definitions at C:/Users/FRICKL/AppData/Local/Continuum/miniconda3/etc/profile.d/conda.sh
conda 4.8.3
raven_libraries C:\ Users\FRICKL\ AppData\ Local\Continuum\ miniconda3\envs\raven_libraries
Found library environment
Activating environment
Activating environment

done!
rook: loading init file "C:/msys64/home/FRICKL/cleaning _hybrid/hybrid/scripts/rook.ini™
rook: ... loaded setting “add_non_default_run_types = dymola,raven”
rook: ... loaded setting “add_run_types = dymola,raven”
rook : loaded setting “test_dir = tests”
rook : loaded setting “testers.dirs = scripts/testers ,raven/scripts/TestHarness/testers/”

rook: found 27 test dirs under “tests” ...
rook: loading init file ”C:/msys64/home/FRICKL/cleaning _hybrid/hybrid/scripts/rook.ini”

rook: ... loaded setting ”add_non_default_run_types = dymola,raven”
rook : loaded setting “add_run_types = dymola,raven”

rook loaded setting “test_dir = tests”

rook: ... loaded setting “testers_dirs = scripts/testers ,raven/scripts/TestHarness/testers/”

(1/27) Success( 40.44scc) tests\dymola_tests \BOP_L1_Boundaries_a_Test\
(2/27) Success( 41.22sec) tests\dymola_tests \BOP_L1_Boundaries _b_Test\
(3/27) Success( 15.27scc) tests\dymola_tests\Desalination -1_pass\
(4/27) Success( 15.84scc) tests\dymola_tests\Desalination -2pass _mixing\
(5/27) Success( 14.17sec) tests\dymola_tests\Desalination -2_pass\
(6/27) Success( 24.64scc) tests\dymola_tests\Desalination -NHES_basic\
(7/27) Success( 22.12sec) tests\dymola_tests\Desalination -ROmodule\
(8/27) Success( 42.10scc) tests\dymola_tests\Desalination -NHES_complex\
(9/27) Success( 17.21scc) tests\dymola_tests \GTTP_Test\

(10/27) Success( 36.21sec) tests\dymola_tests\Generic -Modular PWR\
(11/27) Success( 23.93sec) tests\dymola_tests \HTSE_Power_Test\

(12/27) Success( 32.00scc) tests\dymola- tests \HTSE-Steam - Test\

(13/27) Success( 39.60scc) tests\dymola-tests \NSSS-test\

(14/27) Success( 55.31sec)tests\dymola_tests\NuScale -4Loop\

(15/27) Success( 36.51sec)tests\dymola_tests\NuScale Nominal _Test\
(16/27) Success( 15.14scc) tests\dymola-tests\Simple_Breakers_Test\
(17/27) Success( 26.16scc) tests\dymola-tests\NuScale-primary - test\
(18/27) Success( 15.70sec) tests\dymola_ tests\StepDownTurbines\
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(19/27) Success( 16.61sec) tests\dymola_tests\StepDownTurbines_complex\,
(20/27) Success( 14.34sec) tests\dymola_tests\Supervisory _Control_Test\
(21/27) Success( 14.31sec)tests\dymola_-tests\Test-Battery -Storage\
(22/27) Success( 34.01sec)tests\dymola_tests\Test_Thermal _Storage\
(23/27) Success( 37.58sec) tests\dymola_tests\Thermocline _Cycling\
“failing”

(24/27) Skipped( None! )tests\dymola_tests\TightlyCoupled _-FY18_Battery\
“failing”

(25/27) Skipped( None! )tests\dymola_tests\TightlyCoupled FY18_TES\
(26/27) Success( 25.44sec)tests\dymola_tests\Thermocline_Insulation\
(27/27) Success( 31.37sec)tests\raven_tests\train\TrainArmaOnData

PASSED: 25
SKIPPED: 2
FAILED: 0
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3 Running and Creating New Code

The physical modelica models are the cornerstone of the Hybrid repository. They are designed
to represent physical industrial processes that can be configured into different potential integrated
energy systems (IES). Table 1 gives an overview of the main types of integrated energy systems,
along with models currently incorporated in the hybrid repository.

3.1 Understanding and Running Existing Models

The hybrid repository is broken down using the templating system shown in Figure 1. The top level
is the overall system package which incorporates all of the Modelica models contained within the
NHES package. Then inside of the NHES package are the different subpackages (Systems, Elec-
trical, Thermal, etc...). Within each of the subpackages are further subpackages as seen in the
Systems package. Within the Systems package there are further subpackages called SubSystem
Category (Examples, PrimaryHeatSystem, EnergyStorage, etc...). Then within these SubSystem
Categories there is yet another level of subpackage that is called SubSystem _Specific. Within the
SubSystem Specific category is where development takes place and potential configurations of the
different processes take shape. Inside each SubSystem_Specific there is a template that includes
Examples, Subsystem Dummy, CS_Dummy, ED_Dummy, Data, BaseClasses, and usually a Com-
ponents folder. For existing systems the Examples folder contains a runnable example the user can
execute to see how the code runs at a top level and what scenarios it is capable of running. An
example of which is depicted in Figure 2. For each example the user can double click on the main
system which will open the table in the upper left hand corner of Figure 2 which provides inputs
for the user to change parameters about the system. Then if the user wishes to modify the control
system utilized they can either choose from the drop-down menu, or click the button at the right of
the “CS” line to open the table in the lower left hand section which provides options to delay when
different control systems come online.

These example tests provide a good way for the user to become associated with the large sub-
system in terms of how they work and the different parameters that can be utilized to tune and
interact with the models. In addition to the examples file a deeper understanding of the model can
be realized by looking into the component structure of the model. This is typically accomplished
through looking at the filled-out Subsystem Dummy section. For the Westinghouse 4-Loop plant
this can be seen in Figure 3. This model includes several subcomponents connected into a singular
model. Each model with its’ own set of parameters. Using this version of the model it is possi-
ble to discern the inner workings of the model in terms of sensors, physical descriptions of the
code, inlet and outlet conditions, and system dependencies. In addition to the SubSystem Dummy
section, large process models typically include a control system section which is created from the
CS_Dummy file in the branch. These control system files can be added as a control system for the
Subsystem to control different valves, pumps, and control drives within the process from the drop-
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Table 1: Examples of large-Scale Systems within the Hybrid repository used in the creation of

Integrated Energy Systems.

Category Description Specific Example

Primary Heat System Provides base load heat and | Nuclear Reactor
power

Energy Manifold Distributes  thermal energy | Steam Manifold

Balance of Plant

Industrial Process

Energy Storage

Secondary Energy Source

Switch Yard
Electrical Grid

Control Center

among subsystems

Serves as primary -electricity
supply from energy not used in
other subsystems

Generates high value prod-
uct(s) using heat and electricity
from other systems

Serves as energy buffer to in-
crease overall system robust-
ness and system that can in-
crease profits during highly
fluctuating energy prices
Delivers small amounts of top-
ping heat required by industrial
processes or rapid dynamics in
grid demand that cannot be met
the remainder of the system
Distributes electricity among
subsystems, including the grid
Sets the behavior of the grid
connected to the IES

Provides proper system control
and test scenarios
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Turbine, condenser, and feed-
train

Steam Electrolysis, gas to lig-
uids, reverse osmosis

Electric Batteries, Two-Tank

Sensible Heat Storage, Ther-
mocline

Natural Gas Turbine

Electricity Distribution
Large Grid Behavior

Control System/ Supervisory
Control System
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Figure 1: a) Overall Modelica package, b) template structure for creating new subsystem cate-
gories and specific subsystem models within a category, c) example of a specific implementation
of a primary heat system using the template approach.
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Primary Heat System

Figure 2: Exploded view of the NSSS_Test example within the NHES library with control system
options opened up
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down menu in the “CS” section seen in Figure 2. large process systems may have several different
potential control systems based upon what type of Integrated Energy System they are operating
within. An illustration of one of the Westinghouse Control systems can be seen in Figure 4.

== BEE & 3

@ e sensorBus actuatorBus

. { '| B port_b
L rever

IOEIBUBDES)

®
Figure 3: Subsystem for the Westinghouse-4 Loop model.

Assuming the user is creating a new package with new components specific to the model it is
best to include those models with a “components” folder in the subpackage containing the “Base-
Classes” folder. The Data folder is typically where the main data structures in terms of “records”
of kept for the process model. Records are files that are intended to be used as an input deck to
the main model for use as a set of “parameters” the components will read from. The ED_dummy
file within the Subsystem_Specific category is the Event Driver file and is rarely used and can be
ignored from a user perspective.

3.1.1 Modifying Existing Models for Specific Runs

A starting point from which a user can begin model development and analysis is from an existing
Example model. To properly edit the Examples within the hybrid repository while still maintaining
the regression system one needs to create a duplicate model of the example file that is to be edited.
This can be done by right clicking on the file as shown below and creating a duplicate class.

This file will the be placed in the Examples folder where edits can be made to it for new and
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Figure 4: Control System (CS) for the Westinghouse 4 Loop model

unique runs. This includes things such as new control schemes, sizing, timeruns, etc..

3.2 Configuring Existing Models into Integrated Energy Systems

Each subsystem of the Integrated Energy Systems is inherently interesting on its own and large
spans of time can be spent researching and fine tuning them independently. However, the developer
team is aware that in the evolving energy landscape, and to the extent users will come across this
repository, that integrated energy systems are the primary focus.

This focus includes systems that involve the distribution of heat and electrical energy among
several subsystems and the control schemes utilized to accomplish this. Therefore, this section
seeks to provide an introductory understanding of how to connect subsystems together within the
Hybrid repository. To accomplish this the NuScale Coupling_Test Example will be created starting
from the GenericModularPWR park system.

The first step is to take a similar example that has the Supervisory Control System in the top
level. In this case the GenericModularPWR _park was used. A duplicate class was created and
all the components aside the Steam Manifold, Turbine, Simple Breakers, infinite grid, supervisory
control system, delay start, and data capacity were removed. See below.

Then the primary side of the NuScale was added in this case the NuScale _Taveprogram version
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NHES
> @) UsersGuide
~ 4 Systems
“i] Templates
- Examples
51 SupervisoryControl
v @ PrimaryHeatSystem

~ [ Westinghouse4LoopPWR

v Examples
Open Class
[ nsss .
Open Class in New Tab
[ cs_Defautt Open Class in New Window

CS_SteadyNominalt
[F] ¢s_LoadFollow
(&) ED_Default
> [ Components
» [ Data
BaseClasses

© 0

[ GenericModular_PWF
[ | NuScale_Generic x

BaseClasses

Parameters

New »
Order L4
Rename...
Refresh

Check

Copy Path

Add as Favorite...

Ctrl+C

Q  search...

Model...

Connector...

Record...

Block...

Function...

Type (enumeration)...

Package...

Duplicate Class...
Extend From...

Ctrl+Shift+M

Ctrl+Shift+P

Ctrl+Shift+D

Figure 5: Creating a duplicate class for model runs.
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Figure 7: Rearrangement of Initial Energy System
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of the NuScale primary unit.

Figure 8: Creation of NuScale Energy System

Then from this point it is a matter of telling the systems what control schemes to use. For this
system the reactor operates to meet a certain primary system average temperature in accordance
with the turbine output. To input this the control system: PrimaryHeatSystem.NuScaleGeneric.
CS_NuScale_Tave was used with input: W_turbine = BOP.powerSensor.power and W _Setpoint =
SC.W _totalSetpoint_BOP, see Figure 9. And the turbine control scheme is modified to reflect a
once through system type control strategy where the turbine control valve operates to meet a con-
stant pressure in the turbine, Figure 10. While it is noted that is not the official control strategy
strictly speaking for the NuScale system nor is it the one used in load following scenarios in the
hybrid repository, it does provide a baseline for which to control the system and modifications can
be made from this point. The power setpoints in the BalanceOfPlant. Turbine. CS_OTSG_Pressure
control module are 160MW for both Reactor_Power and Nominal Power while p_nominal param-
eter is set to BOP.port_a_nominal.p to ensure a single parameter value is carried throughout the
system. Additionally, W_totalSetpoint is set to SC.W _totalSetpoint_BOP, Figure 10.

To complete the construction of the model the systems need to match on the boundaries. To do
this the values from the primary heat system need to be transferred to the Steam Manifold under
the nominal values tab, Figure 11 and 12.

3.3 Test Creation

To create a regression test once a user develops an example test in the Dymola NHES library can
be accomplished through a couple of settings. In the Dymola simulation setup tab in the output tab
uncheck the store at variable events box. Then click store in model button and check the output
box, click ok, then click ok again, then Save the model. Example settings are shown in Figure 13.

In the simulateModel command one of the following two flags is required. Either “numberOfin-
tervals” or ”Outputinterval”. numberOflntervals tells dymola how many output intervals to make.
Outputlnterval tells dymola at what timestep interval should an output be present for comparison.
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redeclare nuScale_Tave_enthalpy.C5 in NHES.Systems.Examples.NuScale_Coupling_Attempt ?

General  Add modifiers Attributes

Component Icon

Mame |redeclare nuScale_Tave_enthalpy.CS |

Comment | |

Model [l
Lo

Path MHES.Systemns.PrimaryHeatSystem.MuScale_Generic.CS_MNuScale_Tave
Comment

Inputs

W_turbine | BDP.powerSensor.power|* W Turbine Qutput
W_Setpoint | SC.W_totalSetpoint_BOP |» W Turbine Setpoint

Cancel Info

Figure 9: Primary System Controller Settings
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redeclare BOP

5 in NHES. Sy

stems.Examples.MuScale_Coupling_Atternpt

General  Add modifiers  Attributes

Component

Icon

Name |redeclare BOP.CS

Comment | |
Madel
Path MNHES.Systems.BalanceOfPlant. Turbine.C5_0OTSG_Pressure
Comment
Parameters
delayStart TCV | J00]r s Delay start of TCV control
delayStartBY delayStartTCV |* s Delay start of BV control
p_nominal BOP.port_a_nominal.p |* Pz Mominal steam turbine pressure
TCV_opening_nominal | 0.5 Mominal opening of TCV - controls power
BV_opening_nominal | 0.001 |' Mominal opening of BV - controls pressure
Inputs
W_totalSetpoint | SC.W_totalSetpoint_BOP |' w Total setpoint power from BOP
Reactor_Power | 160 |> MW Reactor Power Level
Nominal_Pawer | 160 |' MW Nominal Power Level

0K || Cancel || Info

Figure 10: Turbine Control Settings
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EM.port_al_nominal in MHES.Systems.Examples.Nu5cale_Coupling_Attempt

General  Add modifiers  Attributes

Component
Mame |EM.p0rt_al_numinaI |
Cormment | |
Model
Path MHES.Systemns.BaseClasses.Record_fluidPorts
Comment
Parameters
p | nuScale_Taveprogram.port_b_nominal.p |' Pa Absolute pressure
h | nuScale_Taveprogram.port_b_nominal.h |> 1/kg  Spedific enthalpy
m_flow | -nuScale_Taveprogram.port_b_nominal.m_flow |> kg/s  Mass flow rate
[ ok | | Cancel | | Info

Figure 11: Port a Boundary Values of the Energy Manifold
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EM.port_b1_nominal in MHES.5ystermns. Examples.Mu5cale_Coupling_Attempt

General  Add modifiers  Attributes

Component

Mame |EM.pt}rt_b1_nominaI |

Cormment |
Model

Path MHES.Systems.BaseClasses.Record_fluidPorts

Comment

Parameters

p | nuSmle_Taveprugram.port_a_numinal.p|' Pa Absolute pressure
h | nuScale_Taveprogram.port_a_nominal.h |' 1/kog  Specific enthalpy
m_flow | -port_al_nominal.m_flo .|' ka/s  Mass flow rate

Cancel Info

Figure 12: Port b Nominal Values of the Energy Manifold
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Figure 13: Settings to Create a proper mat file for a gold folder test

The .mat file in the gold folder will need to be run using the same simulateModel command that is
present in the .mos file being created.

These can be selected in the Simulation Setup tab of the Dymola GUI, Figure 14, and should
carry down to the command you copy and paste in the .mos file. An example is shown below of
the simulation setup tab.

Then run the simulation, (ideally a test should take less than 100 seconds). On the simulation
tab in the command line copy the simulation command. Example below:

simulateModel ("NHES. Systems . EnergyManifold . SteamManifold .
Examples. SteamManifold_Test”, stopTime=100, numberOflntervals=100,
method="Esdirk45a”, resultFile="SteamManifold_Test”);

This command should then be added to a file and named something like Test_Example.mos.
The command can be found in the Simulation Setup tab of the Dymola GUI once you hit simulate

Then in folder /path/to/hybrid/hybrid/tests/dymola_tests create a folder named Test_YourModel.

Create a gold folder in the new folder, drop the .mat file from your simulation that is named
resultFile=""SteamManifold_Test” from your simulateModel command into the gold folder. The
.mat file is created in your working directory in Dymola. Then in the main Test_YourModel folder
drop the Test_ Example.mos file and create a tests file open it up and place the following in it:
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Narisble Bramser 8%

Varabie vae st Desopten Ty | | [ Pe[s] | B8 simutston seusp R
v Stearmanifold_Test 1
sink_1

107 cane | tean | vt | 0o | Goroe | ot | aGont | it ||

Experiment |
vs Model NHES Systrms Energyan Fold StaarbanFold Exarmples. Stearmblanfcid_Test

Resut Steavnfon_Test [——— .
at 0 ustog integration method:

e Smustion mtarval

b

a1 successully ax T = 109

of mtervas (100

Intagraton

00— algorthm EsdukdSa - order 5 stif -
Tolerance 0.0001

Fred Integrator Step

Srubiton Verson

Store in Model| 2 Automaticaly stors Ganaral and Inkne Rtsgration settngs [ OK | | Cancel

2301cSystenes Dymola/ 001/ secip. dymn
1 Test™, SLpTiBe=100, HUBBEYOIRTETVALI=100, Bethad="ESASPRASA", FESUILFile~"SteamMani (sl Test”)

Figure 14: Simulation Setup

[Tests]
[./]
type = 'HYBRIDTester"'
input = 'Test_Example.mos'
workingDir = ".'
output = 'SteamManifold_Test.mat'
dymola_mats = 'SteamManifold_Test.mat'
rel_err = 0.001
[..7]
[

where SteamManifold_Test.mat should be your result .mat file name, rel_error is the amount of
error allowed between the gold file and the regression test output, and Test_ Example.mos is the run
script created.

3.4 Advanced Test File Options utilized for complex models

For complex models the initialization phase of a simulation can take the Modelica solvers a sig-
nificant amount of time to find an initialization point. This occurs due to the highly nonlinear
nature of the underlying physical equations. A way to avoid such situations is to provide a restart
file to bypass the initialization phase of the simulation. A restart file is automatically created at
the end of each simulation as the dsfin.txt file created in the folder where the simulation is run.
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This file includes the final values of the previous simulation from which the new model can restart.
Move this file to the gold folder for your new testing system. Once this file is created it can then
be loaded automatically via the continue button in Modelica under the Simulation Tab. Select
Continue — ImportInitial — dsfin.txzt. See Figure 15.

S5 _Test - NHES, Systorms BrimaryHaatSystem. Westnghouse4LoopP WA, Exampies.ISS5_Test

stop {10000
Mg |Esdikess

Tiwe [Hrot[17]

o3

or

Figure 15: Import Initial conditions from a previously run simulation

Then once the dsfin.txt file is loaded go into the Setup tab and move the time back to start
from zero and the end time to the desired simulation point for the test, shown in Figure 16. This
is necessary since Dymola assumes the user wants to restart the simulation from where it ended in
time as well. This is not the case for the test. Instead the goal is to skip the initialization phase of
the simulation and provide a clean solution with which to compare.

Simulate this model and save the result file, in this example “NSSS_Test.mat” and place it into
the gold folder of the testing system. Additionally, copy and paste the simulateModel command
that is in the Dymola GUI as the last line of your .mos script file for the test. The first two lines
should be translateModel to make sure the right model is loaded into the equation set, followed by
the importlnitial command that loads all the values into the translated Model. The final command
should be the simulateModel command. The .mos file should look something like what is shown
below.

translateModel ("NHES. Systems . PrimaryHeatSystem . Westinghouse4LoopPWR
.Examples . NSSS_Test”);

importlnitial (”./gold/dsfinal.txt”);
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Figure 16: Realign the Simulation Time

simulateModel ("NHES. Systems . PrimaryHeatSystem . Westinghouse4LoopPWR .
Examples . NSSS_Test”, stopTime=10000, numberOfIntervals =250,

method="Esdirk45a”,

resultFile="NSSS Test”);
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4 Model Description

It is the intent of this document to provide a level of understanding of each of the process models
sufficient to allow users, with some background of Modelica, the ability to integrate, modify top
level parameters, and run simulations of Integrated Energy Systems. Advanced users will be able
to use the models as they see fit, but the descriptions provided here will not necessarily explain all
facets of the models in detail.

4.1 Primary Heat System

In the Hybrid repository there are four potential primary heat sources: The Four-Loop PWR plant,
the Generic Modular PWR, a natural circulation SMR power plant, and the Natural Gas Fired
Turbine. Generally, we consider the Natural Gas Fired Turbine as a peaker unit and thus will save
its” discussion and coverage for the secondary power source section of the Model Descriptions.

4.1.1 Four Loop Pressurized Water Reactor

The Four loop PWR system, Figure 17, is designed to be consistent with publicly available infor-
mation for the Westinghouse plant design [7]. This is a Pressurized Water reactor with a nominal
thermal power of 3400MWt and has control systems designed to output 1100MWe. All system
parameters can be found in the SubSystem model under the “data” record. The steam generator is
of U-tube design and operates at a nominal pressure 1000psia. Reactivity feedback can be found in
the coreSubchannel module alongside an external source of activity that is designed to provide re-
activity feedback from the control rods. Reactivity in the core is based on a point kinetics models,
that includes feedback from fission products, boron, fuel temperature, and moderator temperature.
System decay heat is calculated from the TRANSFORM package via an eleven-group decay heat
correlation from the TRACE user manual.

4.1.2 Generic Modular PWR

The generic modular PWR unit, Figure 18, is sized to be 160 MWt with 50MWe output as is
consistent with the NuScale power module. However, the generic modular PWR does not operate
under natural circulation but instead operates under forced flow. Therefore, this unit provides
more stability in the code since it does not rely on density differentials to drive flow. This makes
the unit less useful than is the NuScale style reactor modeled below, but it does provide the user a
power input consistent with NuScale style systems but without the need to tune system geometries,
friction factors, etc.. to meet the proper flow dynamics. As with the Westinghouse plant the data
file is included in the subsystem model and has reactivity controls within the core submodule. The
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Primary Heat System

Figure 17: Top View of the Four-Loop PWR Plant

Generic Modular PWR relies heavily on the TRANSFORM library for its subcomponents. The
steam generator is a once through design with geometrical orientation consistent with a helical coil
steam generator.

Generic Modular PWR

Primary Heat System

Figure 18: Top Level Depiction of the Generic Modular PWR in the NHES package.

4.1.3 Natural Circulation Small Modular Reactor

The natural circulation SMR power module,Figure 19, is an integral pressurized water reactor
(IPWR) that operates with a nominal thermal power of 160 MWt capable of producing 50 MWe
to the electric grid. Integral designs are fully self-contained, eliminating the need for large main
steam lines that can potentially lead to large break loss of coolant accidents (LOCA). Instead the
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primary system has only an inlet of feed water into the bottom of the helical coil steam generator
and an exit point for steam at the top of the steam generator. All sizes for components is held within
the data record in the sub-system. These sizes are consistent with NRC design documentation that
can be publicly viewed on the NuScale NRC design certification page.

The primary system does not include any pumps but instead operates under natural circulation.
Natural circulation reactors rely on the height and density differentials between hot and cold water
to drive circulation of water through the core. Through elimination of primary coolant pumps an
entire class of accident scenarios is eliminated. Modeling efforts in this report focused on three
main efforts: matching thermal and electric output, matching system geometry, and matching nat-
ural circulation efforts in the system via flow rates and temperature differentials. The primary side
of the module has heights and cross-sectional areas in accordance with NRC design certification
material. The primary and secondary sides were modeled in their entirety. The helical coil steam
generator was modeled as a once through steam generator where the secondary side is on the inside
of the tubes and the primary side fluid run along the outside of the tubes. The full report on this
module is available on OSTI [4].

CONTROL ROD
DRIVE MECHANESM
PRESSURIZER

MAIN STEAM

RISER
(PRIMARY FLOW)

STEAM GENERATOR
(SECONDARY FLOW)

(PRIMARY FLOW)
REACTOR
PRESSURE VESSEL

coRE
(PRIMARY FLOW)

Figure 19: Top Level Depiction of the SMR System in the NHES package.

4.2 Energy Manifold

The energy manifolds intention is be a diversion module to as many different subunits as needed for
fluid diversion. It consists of a series of pipes that can be extended to “n” submodules, see Figure
20. The unit has the capability of utilizing control schemes, however in many practical applications
the control schemes are encapsulated within the subprocesses as opposed to within the energy
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manifold. There are currently four potential energy manifolds that can be used. For practical
purposes only the model SteamManifold_L1_boundaries is used in integrated energy systems as it
does not include control valves and supports “n” submodules going in and out. The other versions
of the energy manifold exist for advanced users in the event the balance of plant or subprocess they
are connecting to does not include sufficient valving and control to properly constrain the system.
For example, simplified balance of plant systems that do not contain return flow would require the
energy manifold to provide makeup water from the condenser, therefore for that scenario we would
need to use the SteamManifold_L1_ FWH_Cond model which contains a condenser and feedwater

heater.

Steam Manifold

Energy Manifold

Figure 20: : Top Level Depiction of the Energy Manifold in the NHES package

4.3 Industrial Process

Integrated Energy Systems often include thermal and electrical energy users aside the electric grid.
To accommodate thermal energy users and byproduct production the HYBRID repository includes
a hydrogen production unit and a reverse 0smosis unit.

4.3.1 Hydrogen Production

The hybrid repository includes hydrogen production via high temperature steam electrolysis (HTSE)
as shown in Figure 21. HTSE utilizes a combination of thermal energy and electricity to split water
into hydrogen (H2) and oxygen (02) in Solid Oxide Electrolyzer Cells (SOECs), which can be seen
in simple terms as the reverse operation of solid oxide fuel cells (SOFCs). The cathode-supported
cell consists of a three-layer solid structure (composed of porous cathode, electrolyte, and porous
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anode) and an interconnect (separator) plate [8]. An oxygen-ion conducting electrolyte (e.g., yttria-
stabilized zirconia [YSZ] or scandia-stabilized zirconia [ScSZ]) is generally used in SOECs [9].
For electrically conducting electrodes, a nickel cermet cathode, and a perovskite anode such as
strontium-doped lanthanum manganite (LSM) are typically used. The interconnect plate separates
the process gas streams; it must also be electrically conducting and is usually metallic, such as a
ferritic stainless steel.

For the HTSE models there are four main models developed by INL, each relying on the same
underlying physics of the system but with different control schemes. The HTSE units within the
Modelica framework have been specifically designed for integration with light water reactor sys-
tems and have been sized with the necessary components to allow for steam side preheating under
this assumption. It should be noted that in other HTSE designs there may be varying degrees of
preheating equipment based on inlet conditions from the external process. For the HTSE process
system parameters are finely tuned and highly non-linear when compared with other process mod-
els. Changes in heat exchanger design and sizing can be made directly within the subsystem model
however due to the nonlinearity of the system convergence following any changes, a singular com-
ponent cannot be guaranteed. To modify HTSE stack characteristics the user will need to go two
levels down into the HTSE stack system the HTSE stack can be clicked on to open a parameter
table where stack characteristics can be modified. Due to the high level of complexity required
with HTSE stacks and the customization required depending on the inlet conditions of external
system usage of the existing HTSE is preferred, with more details available in two reports pub-
lished. [2], [10], [11]. Base classes for the HTSE system can found in the “Electrolysis” package
within the NHES framework and can be utilized if one desires to create their own HTSE unit.

®* O
s L®

Industrial Process

Figure 21: Top Level Depiction of the High Temperature Steam Electrolysis Unit in the NHES
package
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4.3.2 Desalination

The NHES repository includes a desalination industrial process based on reverse osmosis (RO),
Figure 22, designed for brackish water desalination. RO desalination utilizes a semi-permeable
membrane, which allows water to pass through but not salts, thus separating the fresh water from
the saline feed water. A typical Brackish Water RO (BWRO) plant consists of four main compo-
nents: feed water pretreatment, High-Pressure (HP) pumping, membrane separation, and permeate
(fresh water) post-treatment. The concentrate water rejected by the first membrane module plays a
role as the feed water for the second membrane module by the successive order, and so on. These
pressure vessels are arranged in rows in each membrane stage, with two-stage membrane separa-
tion being typical in BWRO. Each stage has a recovery of 50-60 percent, achieving overall system
recovery of 70-85 percent [12].

The Reverse Osmosis Subsystem unit provides the user the ability to modify the number of
parallel reverse osmosis units being utilized within the plant alongside to specify how much power
is being input into the RO system. Each one of these parallel systems is assumed to go through
a two-step the desalination process. In addition, the unit provides the user the ability to alter the
salinity of the brine coming into the plant alongside a specified pressure differential across the
plant. If further alterations and control are desired from a user perspective reports detailing the full
specifications of the plant designs are available in [3], [12]. Additionally, base components for the
entire desalination plant can be found in the “Desalination” package within the NHES repository.

Industrial Process

Plant.png
Figure 22: Top Level Depiction of the Brackish Water Desalination Process in the NHES package

4.4 Balance of Plant

There are two main balance of plant models in the hybrid repository. The standard ideal turbine
(with and without a condenser and feedwater heater) and step down turbines that allow turbine tap
offtake.
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4.4.1 Simple Balance of Plant

The balance of plant system consists of an ideal steam turbine model, a condenser, feedwater
system for reheat, and a couple of valves that allow steam flow either to the turbine or as bypass
to the condenser, Figure 23. Additionally, piping exists to send condensate and rejected heat from
ancillary processes directly to the condenser. The balance of plant model can handle supervisory
control input for direct control of the turbine control valve and turbine bypass valve based on
different sensor input. The main balance of plant system is designed to model Rankine systems.

Turbine

Balance of Plant

Figure 23: Top Level Depiction of the Balance of Plant in the NHES package

4.4.2 Step Down Turbines

The step-down turbines consist of a series of an ideal steam turbines connected via a singular
rotational inertia shaft with bypass tap lines coming off the turbines, Figure 24. The purpose
of this model is to allow turbine tap offtake in a dynamic system. The data record within the
model includes a series of inputs that allows the user to specify the turbine tap offtake pressures.
Additionally, each individual offtake fraction can be input from the data record. The outlet of the
stepdown turbines does not include a condenser; therefore, a condenser model would need to be
included in a separate system model if the fluid is to be re-introduced into an overall system model.

4.5 Energy Storage

Energy Storage is a large component of Integrated Energy Systems. Currently there are two mod-
els of Energy Storage in the repository. Electric Battery Storage, characterized largely as Li-ion
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Industrial Process

Figure 24: Top Level Depiction of the StepDown Turbines in the NHES package

battery technology, and two-tank sensible heat thermal energy storage that uses Therminol-66 as
the working fluid.

4.5.1 Electric Battery Storage

Electric Battery Storage, shown in Figure 25, is largely characterized as fast and expensive. Due to
the speed with which battery storage systems operate, on the order milliseconds, the battery within
the hybrid repository has been modeled as a simple logical battery system. The battery can both
charge and discharge based upon the direction of electricity flow through the port. It is assumed to
be a “perfect” battery and due to the speed of the system, subcomponents have not been modeled
simply because they would operate faster than would be useful for the types of analysis utilized
with the system. The battery has user-based inputs that control how fast or slow the system can
charge and discharge as well as how much energy can be stored within the battery before it is
considered full.

4.5.2 Two-Tank Thermal Energy Storage

Sensible heat storage involves the heating of a solid or liquid without phase change and can be de-
constructed into two operating modes: charging and discharging. A two-tank TES system, shown
in Figure 26, is a common configuration for liquid sensible heat systems. In the charging mode
cold fluid is pumped from a cold tank through an Intermediate Heat Exchanger (IHX), heated, and
stored in a hot tank while the opposite occurs in the discharge mode. Such systems have been
successfully demonstrated in the solar energy field as a load management strategy. The config-
uration of the TES system held within the repository involves an outer loop interfaces with the
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Logical Battery

Energy Storage

Figure 25: Top Level Depiction of the Logical Battery in the NHES package

energy manifold. Bypass steam is directed through an IHX and ultimately discharged to the main
condenser of an Integrated system. An inner loop containing a TES fluid consists of two large
storage tanks along with several pumps to transport the TES fluid between the tanks, the IHX and
a steam generator. Flow Bypass Valves (FBVs) are included in the discharge lines of both the
“hot” and “cold” tanks to prevent deadheading the pumps when the Flow Control Valves (FCVs)
are closed. Therminol-66 is chosen as the TES fluid as it is readily available, can be pumped at
low temperatures, and offers thermal stability over the range (-3°C-343°C) which covers the an-
ticipated operating range of the light water reactor systems (203°C-260°C). Molten salts (e.g. 48
percent NaNO3 — 52 percent KNO3) were not considered, as the anticipated operating tempera-
tures fall below their 222°C freezing temperature. The TES system is designed to allow the power
plant to run continuously at 100 percent power over a wide range of operating conditions. During
periods of excess capacity, bypass steam is directed to the TES unit through the auxiliary bypass
valves where it condenses on the shell side of the IHX. TES fluid is pumped from the cold tank
to the hot tank through the tube side of the IHX at a rate sufficient to raise the temperature of the
TES fluid to some set point. The TES fluid is then stored in the hot tank at constant temperature.
Condensate is collected in a hot well below the IHX and drains back to the main condenser or can
be used for some other low pressure application such as chilled water production, desalination or
feed-water heating. The system is discharged during periods of peak demand, or when process
steam is desired, by pumping the TES fluid from the hot tank through a boiler (steam generator)
to the cold tank. This process steam can then be reintroduced into the power conversion cycle for
electricity production or directed to some other application through the PCV. A nitrogen cover gas
dictates the tank pressures during charging and discharging operation. Full details of the model
and its use within integrated energy systems can be found in report [3], [13].

The model itself is coded in a non-conventional manner compared to the rest of the modelica
models. It is coded in an input, output sense rather than in a fluid-port, electric-port based modeling
system. This is because the model was transferred over from a FORTRAN style code rather than
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initially coded in Modelica. To modify the two-tank thermal storage system the user will need to
look at each individual model within the charging mode and the discharge mode. Base components
within the models are fully commented within the code. Like the HTSE the thermal storage unit is
finely tuned and thus use outside of its current state will take a bit of work. To help with this the
thermal storage unit has been sized to be compatible for varying sizes of offtake from a power unit.
One is sized to take 20 percent of nominal steam from a standard 3400MWt Westinghouse plant,
and one is designed for 5 percent offtake. Both designed to provide energy back as a peaking unit.
The peaking unit is held within the discharge side of the model and is assumed to have its own
turbine or is sent back to the low-pressure turbine. Explicit modeling of the coupling back with the
low-pressure turbine has not been done. Future updating of the two-tank thermal storage unit to be
consistent with other models is planned.

Energy Storage

Figure 26: Top Level Depiction of the Two-Tank Sensible Heat Storage Unit in the NHES package

4.5.3 Thermocline Packed Bed Thermal Energy Storage

A thermocline storage system, shown in Figure 27, stores heat via hot and cold fluid separated by
a thin thermocline region that arises due to density differential between the fluid. Assuming low
mixing via internal flow characteristics and structural design, this thermocline region can be kept
relatively small in comparison with the size of the tank. Additionally, large buoyancy changes and
low internal thermal conductivity are also extremely useful in maintaining small relative thermo-
cline thickness.

To increase the cost-effective nature of these designs, it is common to fill the tank with a
low-cost filler material, such as concrete or quartzite. These filler materials are cheap, have high
density, and high thermal conductivity. By using such material, a reduction in the amount of
high cost thermal fluid can be achieved, thereby increasing the economic competitiveness of such
designs.
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The thermocline system was modeled from a modified set of Schumann equations that were
originally introduced in 1927 [14]. The equation set governs energy conservation of fluid flow
through porous media. His equation set has been widely adopted in the analysis of thermocline
storage tanks. The modified equations adopted a new version of the convective heat-transfer co-
efficient to incorporate low and no-flow conditions from Gunn in 1978 [15]. Additionally, a con-
ductive heat-transfer term was added for the heat conduction through the walls of the tank. Self-
degradation of the thermocline in the axial direction is neglected due to low relative values when
during standard operation, this is a known limit of the model during times of no flow.

pulse

boundary
m_flow

N>

boundary1

Figure 27: Top Level Depiction of the Single Tank Packed Bed Heat Storage Unit in the NHES
package

4.6 Secondary Energy Source

Secondary Energy Sources, or commonly known as peaking units, are an essential part of the
energy grid. These systems provide “on-demand” energy during moments when the electrical
demand is larger than what the rest of the grid can accomodate. A common feature of

4.6.1 Natural Gas Fired Turbine

Recently, natural gas-fired turbines have found widespread use because of their higher efficiencies,
lower capital costs, shorter installation times, abundance of natural gas supplies, lower greenhouse
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gas emissions compared to other energy sources; and fast start-up capability, which enables them
to be used as peaking units that respond to peak demands [16], [17]. Due to their special char-
acteristics, natural gas fired turbines are installed in numerous places around the world and have
become an important source for power generation. This section is dedicated to detailed process
and control designs of the GTPP, whose primary role is to cover rapid dynamics in grid demand
that cannot be met by the remainder of the N-R HES. Simulation results involving several case
studies are also provided. Full system details are available in OSTI [2].

The natural gas turbine, Figure 28, is designed with parameters embedded in each individual
component. The top level variables can be edited directly within the GTTP_PowerCtrl system.
This component is where things such as pressure ratios, flow rates, mechanical efficiencies, and
shaft inertia can be modified. The natural gas turbine is designed with a nominal electrical power
generation capacity of 35MWe but has a specially designed capacityScaler variable that allows the
user to scale the system to between 17 and 70MWe for a singular load. If more are desired then
the deployment of several natural gas fired turbines would be required.

Natural Gas-Fired Turbine

Secondary Energy Supply

Figure 28: Top Level Depiction of the Natural Gas Fired Turbine in the NHES package

4.6.2 Hydrogen Turbine

With the increase in hydrogen production technologies comes on the other end hydrogen burning
technologies. To accommodate a hydrogen burning technology the HYBRID repository has been
outfitted with a retrofit natural gas burner that is capable of handling pure hydrogen.

The hydrogen turbine, Figure 29, is designed with parameters embedded in each individual
component. The top level variables can be edited directly within the Hydrogen PowerCtrl system.
This component is where things such as pressure ratios, flow rates, mechanical efficiencies, and
shaft inertia can be modified. The hydrogen turbine is designed with a nominal electrical power
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generation capacity of 35MWe but has a specially designed capacityScaler variable that allows the
user to scale the system to between 17 and 70MWe for a singular load. If more are desired then
the deployment of several hydrogen turbines would be required.

Hydrogen Turbine

Secondary Energy Supply

Figure 29: Top Level Depiction of the Hydrogen Turbine in the NHES package
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PURPOSE

Software quality assurance (SQA) is a set of activities necessary to provide adequate
confidence that a software item or product conforms to the set of functional and technical
requirements specified for that item. This plan presents the required activities to enable
consistent SQA implementation within the HYBRID Software. It provides a standardized
method of capturing software requirements, how those requirements will be
implemented, how the software will be tested, how changes to the software will be
controlled, and how software deficiencies will be handled. This Software Quality
Assurance Plan (SQAP) establishes the software Quality Assurance program for
HYBRID. It covers the periods of software development, maintenance and operations
(M&O), and retirement. It implements applicable requirements in conformance with
PDD-13610, “Software Quality Assurance”. This plan is based on the RAVEN SQA
process, documented in “PLN-5552, RAVEN and RAVEN Plug- ins Software Quality
Assurance and Maintenance and Operations Plan”. The HYBRID software process
follows the PLN-5552 and in this document, the deviations from such plan are
documented.

1.1 HYBRID Description

One of the goals of the HYBRID software/product is to assess the economic viability of
hybrid systems in a market that contains renewable energy sources (e.g. wind, solar, etc.).
The hybrid system would be a nuclear reactor that not only generates electricity, but also
provides heat to another plant that produces by-products, like hydrogen or desalinated
water. The idea is that the possibility of selling heat to a heat user absorbs (at least part
of) the volatility introduced by the renewable energy sources.

The HYBRID software/product is a container of systems/components models and
analysis workflows for the deployment of a “plug and play” framework aimed to
integrate Modelica/Dymola [see def.] with RAVEN in terms of both FMI/FMU [see def.]
construction and repository structure that aims to ease the sharing and simulation of
complex dynamic models.

HYBRID is operational within multiple projects. Ongoing support of HYBRID is
required for the purpose of adding functionality, correcting model errors and improving
the performance of the HYBRID models and analysis flows.

- HYBRID is maintained by a team of scientists/researchers, referred to herein as the
HYBRID core team (see def.). HYBRID maintenance and operations, performed by
the HYBRID core team, is an ongoing activity.

- This plan covers the maintenance of all existing and future components of HYBRID.
This includes, but is not limited to, servers, server software, user workstations,
HYBRID software, and control documents. Changes to this document will be
completed through the Electronic Change Request (eCR) process.
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1.2 Software Lifecycle

HYBRID is using an Agile life cycle methodology. The life cycle will be
performed in an iterative manner and address the requirements, design,
implementation, testing, installation and checkout, operations and maintenance,
and retirement phases.

1.3 Assumption and Constraints

- The HYBRID core team will adhere to LWP-1303, “Management of
Unclassified Cyber Security Information Systems” and LWP-1401,
“Preparing and Releasing Scientific and Technical Information Products,”
where applicable.

- 29 USC 794d, Section 508 of the Workforce Investment Act of 1998
considerations will be made for the ability of disabled individuals to access
the information or service provided by the software.

- INL will manage the software with support from vendors (for acquired
software [see def.]) until the software is retired.

- Software vendor support agreements are maintained.

- For firmware, changes to acquired software including software updates and
security patches will be implemented by the product vendor.

- The hardware that serves HYBRID is managed by the High-Performance
Computing Group. The hardware is considered a configuration item (see def.)
for the HYBRID asset, and changes impacting the HYBRID software must be
reviewed by the HYBRID technical lead or designee; however, the
management of the hardware is outside the scope of this plan.

14 Deviation Policy

All deviations from this plan require management approval. Whether planned or
unplanned, if any deviation from this plan is necessary, the following components
will be determined:

- Identification of task affected.

- Reasons for deviation defined.

- Effects on the quality of the project.

- Time and resource constraints affected.

A deviation report will be generated, and authorization will be required.

Deviations that violate requirements must be documented within the relevant
issue.
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2. REFERENCES
The following source documents apply to this SQAP:
[1 29 USC 794d, Section 508 Workforce Investment Act of 1998
[1 INL/EXT-18-44465, “RAVEN User Documentation”

[1 ISO/IEC/IEEE 24765:2010(E), “Systems and software engineering —
Vocabulary”

[J PDD-13610, “Software Quality Assurance Program.”

[J PDD-13000, “Quality Assurance Program Description”

0 LWP-1201, “Document Management”

[0 LWP-1202, “Records Management”

[0 LWP-1305, “Acquisition of Computer Hardware/Software Resources”

[J LWP-1306, “Management of IT Asset Minimum Security Configurations,” Rev.
1, December 23, 2013.

[0 LWP-1401, “Preparing and Releasing Scientific & Technical Information
Products”

0 LWP-4001, “Material Acquisitions”
1 LWP-4002, “Service Acquisitions”

[0 PLN-5552, “RAVEN and RAVEN Plug- ins Software Quality Assurance and
Maintenance and Operations Plan”

[J PLN-4653, “INL Records Management Plan”
[1 SDD-561, “HYBRID Software Design Description (SDD)”

[0 SPC-2990, “HYBRID Software Requirements Specification (SRS) and
Traceability Matrix”

120



Form 412.09 (Rev. 10)

Idaho National Laboratory

Identifier: PLN-6274
HYBRID SOFTWARE QUALITY Revision: 0
ASSURANCE & M&O PLAN Effective Date:  10/01/2020 Page: 6 of 26

3.

DEFINITIONS AND ACRONYMS

This section defines, or provides the definition of, all terms and acronyms required to
properly understand this plan.

Definitions

Acquired software. Software generally supplied through basic procurements, two-
party agreements, or other contractual arrangements. Acquired software includes
commercial off-the-shelf software, support software such as operating systems,
database management systems, compilers, software development tools, and
commercial calculational software and spreadsheet tools (e.g. Microsoft’s Excel).
Downloadable software that is available at no cost to the user (referred to as
freeware) is also considered acquired software. Firmware is acquired software.
Firmware is usually provided by a hardware supplier through the procurement
process and cannot be modified after receipt.

Agile development. Agile development is an approach to software development
under which requirements and solutions evolve through the collaborative effort of
self-organizing and cross-functional teams and their customer(s)/end user(s). It
prescribes adaptive planning, continuous development, early delivery, and
continual improvement, and it encourages rapid and flexible response to change.

Anomaly. Anything observed in the documentation or operation of software that
deviates from expectations based on previously verified software products or
reference documents.

Baseline. A specification or product that has been formally reviewed and agreed
upon, that thereafter serves as the basis for use and further development, and that
can be changed only by using an approved change control process. [ASME
NQA-1-2008 with the NQA-1a-2009 addenda]

Change control. An element of configuration management, consisting of the
evaluation, coordination, approval or disapproval, and implementation of changes
to configuration items (Cls see def.) after formal establishment of their
configuration identification. [ISO/IEC/IEEE 24765:2010(E)]
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Change control board (CCB). The group by which a change is proposed,
evaluated, approved or rejected, scheduled, and tracked. This board is also
responsible for evaluating and approving or disapproving proposed changes to
configuration items (Cls) and implementation of approved changes when
required.

Change requests (CRs). CRs can be initiated by anyone, including off site users,
and can be used for maintenance (fine-tuning and problem resolving), new
development, and enhancements, or can be used to report program errors and
problems.

Change request log. A log that provides a listing of all the change requests and
the change request status used for application software, system software, and
hardware configuration control.

Commercial off-the-shelf. (COTS) Usually refers to software purchased from a
vendor “as-is” with minimal customization or configuration options that meets a
requirement.

Configuration Control. An element of configuration management, consisting of
the evaluation, coordination, approval or disapproval, and implementation of
changes to configuration items after formal establishment of their configuration
identification. [ISO/IEC/IEEE 24765:2010(E)]

Configuration identification. An element of configuration management,
consisting of selecting the configuration items (see def.) for a system and
recording their functional and physical characteristics in technical documentation.

Configuration item (CI). An item or aggregation of hardware or software
(including documentation) or both that is designed to be managed as a single
entity (ISO/IEC/IEEE 24765:2010(E) edited).

Configuration management. A discipline applying technical and administrative
direction and surveillance to identify and document the functional and physical
characteristics of a configuration item (see def.), control changes to those
characteristics, record and report change processing and implementation status,
and verify compliance with specified requirements (ISO/IEC/IEEE
24765:2010[E]).

Configuration Management (see def.) consists of activities to control and manage
changes to items that have a baseline (see def.). It includes the process of
identifying the configuration items (Cls) (see def.) in a system, controlling the
release and change of these items, and recording and reporting the status of the
ClIs and their associated change requests.
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Continuous Integration System (CIS). A system, linked to a central version
control repository, such as GitHub and GitLab (see def.), aimed to automatically
build and test a targeted software. Examples are CIVET, Jenkins, and GitLab
Continuous Integration.

Custom-built IT assets. Information technology (IT) assets designed, developed,
or modified internally or by a qualified subcontractor through the procurement
process. Examples include custom-developed (see def.) or customized software,
spreadsheet, and calculation and analysis applications (e.g., computer models), the
implementation of a new network infrastructure or IT technology (e.g., Gmail,
Internet Protocol Version 6, Internet Explorer 9). [Developed for internal
laboratory use]

Custom-developed sofiware. Software built specifically for a DOE application or to
support the same function for a related government organization. It may be
developed by DOE or one of its M&O contractors or contracted with a qualified
software company through the procurement process. Examples of custom-
developed software include material inventory and tracking database applications,
accident consequence applications, control system applications, and embedded
custom-developed software that controls a hardware device.

Defect. An error, fault or failure in a computer program or system that causes it to
produce an incorrect or unexpected result, or to behave in unintended ways.

Doxygen. Standard tool for generating documentation from annotated C, C++,
Fortran and Python sources.

Dymola. Dymola is a commercial modeling and simulation environment based on
the open Modelica modeling language, Developed by the European company
Dassault Systémes.

Electronic Document Management System (EDMS). System approved for long-
term storage, management, and maintenance of electronic and hardcopy records.

Enterprise Architecture (EA) Repository. An Oracle database that houses
information about software applications and servers and is the source for the INL
data dictionary. The applications are related to the management system business
functions it supports or implements. EA is the repository for the technology

(e.g., software/hardware) used to construct and implement software applications.
EA contains links to the software documentation stored in EDMS (see def.) and
includes a list of software owners.

FMI. The Functional Mock-up Interface (or FMI) defines a standardized interface
to be used in computer simulations to develop complex cyber-physical systems.
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FMU. Based on an FMI, the FMU is an executable called a Functional Mock-up
Unit (FMU), which is “driven” by an FMI. A simulation environment can use the
FMI to create an instance of the FMU and simulate it together with other FMUs
or models native to the simulation environment.

GitHub. A web-based revision control hosting service for software development
and code sharing. GitHub provides additional tools such as documentation
generation, issue tracking, Wikis, nested task-lists within files, etc.

GitLab. A web-based revision control hosting service for software development
and code sharing similar to GitHub. The CIS (see def.) connects to both the
external and internal GitHub/GitLab to perform software builds.

Issue. Issues can be initiated by anyone, including off site users, and are used for
maintenance (fine-tuning and problem resolving), new development,
enhancements, or can be used to report program errors and problems.

Issue (GitHub). As defined for the GitHub environment, issues are suggested
improvements, tasks, or questions related to the repository. Issues can be created
by anyone (for public repositories) and are moderated by repository collaborators.
Each issue contains its own discussion forum and can be labeled and assigned to a
user/developer.

Major Change. A revision to software that, in the best judgment of authorizing
personnel, has the potential to compromise the accuracy/validity of the output
data, and as a result, could diminish the margin of safety to the public, worker, or
environment.

Method. A reasonably complete set of rules and criteria that establish a precise
and repeatable way of performing a task and arriving at a desired result. [The
Configuration Management Manual Guideline for Improving the Software
Process, Carnegie Mellon University Software Engineering Institute, 1995]

Minor Change. A revision to software that, in the best judgment of authorizing
personnel, will not compromise the accuracy/validity of the output data and will
not diminish the margin of safety to the public, worker, or environment.

Modelica. Object-oriented, declarative, multi-domain modeling language for
component-oriented modeling of complex systems, e.g., systems containing
mechanical, electrical, electronic, hydraulic, thermal, control, electric power or
process-oriented subcomponents.

Open source. Denoting software for which the original source code is made freely
available and may be redistributed and modified.
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Pull requests. Pull requests can be initiated by anyone, including off-site users, and
are used for maintenance (fine-tuning and problem resolving), new development,
enhancements, or can be used to address program errors and problems. Pull
requests allow informing others about changes pushed to a repository on a version
control system (see def.). Once a pull request is sent, interested parties can review
the set of changes, discuss potential modifications, and even push follow-up
commits if necessary, as well as integrate changes into the maintained code.

Quality grade. The grade applied to the level of quality activities to be applied to
the specific task or activity. Current quality grades are Nuclear Use QL and
Commercial Use Quality Levels (QLs) High, Medium, and Low.

RAVEN core team. INL personnel who are in charge of the development of the
RAVEN framework or software applications/extensions/plugins that are based on
the RAVEN framework. A list of the current components of the RAVEN core
team can be found at|https:/github.com/idaholab/raven/wiki/AboutUs#raven- |

core-team|

HYBRID core team. INL personnel who are in charge of the development of the
HYBRID software applications/extensions that are based on the HYBRID
software. A list of the current components of the HYBRID core team can be
found at|https://github.com/idaholab/HY BRID/-/wikis/About-Us

RAVEN Software. Open source software that resides in a public repository
(GitHub) that provides the capabilities needed to perform Uncertainty
Quantification, Probabilistic Risk Assessment, Data Analysis, Validation and
Parameter Optimization.

HYBRID Software. Collection of sofiware/models/analysis workflows that resides
in a public repository (GitHub) that provides the for the deployment of a “plug
and play” framework aimed to integrate Modelica/Dymola with RAVEN in terms
of both FMI/FMU construction and repository structure that aims to ease the
sharing and simulation of complex dynamic models.

Regression testing. Selective retesting of a system or component to verify that
modifications have not caused unintended effects and that the system or component
still complies with its specified requirements.

Retirement. Permanent removal of an asset (e.g., system or component) and
associated support from its operational environment.
[ISO/IEC/IEEE Std 24765-2010 edited]

Safety function. The performance of an item or service necessary to achieve safe,

reliable, and effective utilization of nuclear energy and nuclear material processing.
For INL, safety functions are identified and defined in a formal safety basis or
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commitment document as credited for achieving nuclear safety (e.g., safety
structures, systems, and components; safety significant; safety class; safety related,;
or important to safety) (ASME NQA-1-2008 with the NQA-1a-2009 addenda
edited).

Software. Computer programs and associated documentation and data pertaining
to the operation of a computer system and includes application software and
support software.

Software life cycle. The activities that comprise evolution of software from
conception to retirement. The software life cycle typically includes the activities
associated with requirements, design, implementation, test, installation, operation,
maintenance, and retirement.

Software quality assurance. All actions that provide adequate confidence that
software quality is achieved.

Sofitware tool. A computer program used in development, testing, analysis, or
maintenance of a program or its documentation. Examples include comparators,
cross-reference generators, compilers, computer-aided software-engineering tools,
configuration and code management software, flowcharters, monitor test case
generators, and timing analyzers.

Support software. Software tools (see def.) and system software (see def.).

System software. Software designed to facilitate operation and maintenance of a
computer system and its associated programs (e.g., operating systems and
utilities).

System testing. Testing conducted on a complete, integrated system to evaluate
the system’s compliance with its specified requirements.

Task (GitHub). A suggested improvement or feature enhancement.

Test case. (1) A set of test inputs, execution conditions, and expected results
developed for a particular objective, such as to exercise a particular program path
or to verify compliance with a specific requirement. (2) Documentation
specifying inputs, predicted results, and a set of execution conditions for a test
item.

User documentation. Instructions for use describing the capabilities and intended
use of the software within specified limits. May also include a theory manual,
when relevant.
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Validation. Confirmation, through the provision of objective evidence (e.g.,
acceptance test), that the requirements for a specific intended use or application
have been fulfilled. [[SO/IEC/IEEE 24765:2010(E) edited].

Verification. (1) The process of evaluating a system or component to determine
whether the products of a given development phase satisfy the conditions imposed
at the start of that phase. (2) Formal proof of program correctness (e.g.,
requirements, design, implementation reviews, system tests).

[ISO/IEC/IEEE 24765:2010(E) edited]

Version Control System. It is the system aimed to support the management of
changes to files, in general, and computer programs, in particular. Changes are
usually identified by a number, letter code or unique alphanumeric identifiers,
termed the "revision number", "revision level", or simply "revision". Each
revision is associated with a timestamp and the person making the change.
Revisions can be compared, restored, and with some types of files, merged.

Examples of Version Control Systems are GitHub and GitLab (see def.)
3.2  Acronyms

ASME  American Society of Mechanical Engineers

BEA Battelle Energy Alliance

CCB Change Control Board

CFR Code of Federal Regulations

CI Configuration Item
CIS Continuous Integration System
CM Configuration Management

CMP Configuration Management Plan
COTS Commercial off-the-shelf software
CR Change Request

CSV Comma Separated Value

DOE Department of Energy

EA Enterprise Architecture

127



Idaho National Laboratory

Form 412.09 (Rev. 10)

Page: 13 of 26

Identifier: PLN-6274
[HYBRID SOFTWARE QUALITY Revision: 0
ASSURANCE & M&O PLAN Effective Date:  10/01/2020
EDMS  Electronic Document Management System
FMI Functional Mock-up Interface
FMU Functional Mock-up Unit
IAS Integrated Assessment System
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
INL Idaho National Laboratory
ISMS Integrated Safety Management System
ISO International Organization for Standardization
IT Information Technology
LST List
LWP Lab-wide Procedure
M&O  Maintenance and Operations
NQA Nuclear Quality Assurance
POSIX  Portable Operating System Interface
PRA Probabilistic Risk Assessment
QA Quality Assurance
QL Quality Level
QLD Quality Level Determination
RTM Requirement Traceability Matrix
RAVEN Risk Analysis and Virtual ENvironment
SRS Software Requirements Specification
SSD Safety Software Determination
SQA Software Quality Assurance
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SQAP  Software Quality Assurance Plan
USGCB U.S. Government Configuration Baseline
V&V Verification and Validation

4. MANAGEMENT

The MANAGEMENT plan of the HYBRID Software fully adheres with the one spelled
out in the PLN-5552, “RAVEN and RAVEN Plug-ins Software Quality Assurance and
Maintenance and Operations Plan” (replacing the word RAVEN with HYBRID).

5. CONFIGURATION MANAGEMENT

The CONFIGURATION MANAGEMENT plan of the HYBRID Software fully adheres
with the one spelled out in the PLN-5552, “RAVEN and RAVEN Plug-ins Software
Quality Assurance and Maintenance and Operations Plan” (replacing the word RAVEN
with HYBRID). The HYBRID configuration items’ list can be found in LST-1296.

6. SUBCONTRACTOR.VENDOR

No subcontractors/vendors activities are envisioned for HYBRID Software. In case of a
new strategy, involving subcontractors, is defined, this plan will be revised.

7. DOCUMENTATION

The purpose of this section is to define the minimum documentation required to properly
implement the SQA requirements. At all times during the life cycle of HYBRID, the
following documents will be maintained as part of the Asset Portfolio.

7.1 Minimum Documentation Requirements

As a minimum, the following documentation is required for the HYBRID
software. These documents are managed as records in accordance with Section
|‘ RECORDS COLLECTION, MAINTENANCE, AND RETENTION}”

The following documentation is required as a minimum:

Document Record Location ID

. Electronic Document
Software Quality Assurance Plan Management System (EDMS) PLN-6274

Software Test Plan and

Verification & Validation GitHub PLN-6274
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Software Requirements
Specification and Traceability GitHub SPC- 2990
Matrix
Software Design Description GitHub SDD-561
User Documentation (see def.) GitHub INL/MIS-20-60624

7.2 Other Documentation

In addition to the above documents, the following are created during the
procurement and baselining of the project. These may be used in support of
Change Control Request implementation and M&O activities.

[J  SSD-000753, “HYBRID Safety Software Determination”

0 QLD, “HYBRID Quality Level Determination”

00 HYBRID CTM|Entryt 3C9B336C-8262-4790-AEBD-582B1BD85CF5

All documents will be managed according to LWP-1201, “Document

Management.”

All records generated as part of this plan will be processed and managed

according to LWP-1202, “Records Management.”

STANDARDS, PRACTICES, CONVENTIONS, AND METRICS

Content

The standards for HYBRID are maintained/recorded in the HYBRID GitHub
repository (Wiki section). Any developer of the HYBRID software need to be
aware of the standards and to follow the development guidelines.

The HYBRID standards evolve around the following macro-areas:

- Software Coding Standards

- Commentary Standards

- Testing Standards and Practices

8.1.1 Software Coding Standards
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The HYBRID software imposes a coding standard on all source code
within the repository. This standard is publicly maintained on the
HYBRID GitHub repository wiki website
(https://github.com/idaholab/HY BRIDJ-/wikis/HYBRID-Code-Standards|
) and enforced through the continuous integration testing system.

8.1.2 Commentary Standards

The HYBRID software imposes a commentary standard on all source
code within the repository. The standard is aimed to fully describe any
module/method in the source code, guaranteeing the automatic
generation of software documentation via doxygen (see def.). This
standard is publicly maintained on the HYBRID GitHub repository wiki
website (https://github.com/idaholab/HYBRID|-/wikis/Hybrid-Software-

Commentary-Standard|) and enforced through the continuous integration

testing system.
8.1.3  Testing Standards and Practices

The HYBRID software imposes a testing standard and practices on all
the capabilities/methods of the HYBRID software. This standard is
publicly maintained on the HYBRID GitHub repository wiki website
(https://github.com/idaholab/HYBRIDJ-/wikis/HYBRID-Testing- |

Standards-and-Practices) and enforced through the review process by a

10.

member of the CCB.

SOFTWARE REVIEWS

The SOFTWARE REVIEWS process of the HYBRID Software fully adheres with the
one spelled out in the PLN-5552, “RAVEN and RAVEN Plug-ins Software Quality
Assurance and Maintenance and Operations Plan” (replacing the word RAVEN with
HYBRID).

TESTING

The goal of software validation (see def.) is to confirm that the requirements for a
specific intended end use have been fulfilled. Software verification (see def.) evaluates a
system or component to confirm that specified conditions have been satisfied and
provides formal proof of correctness.
10.1 V&V Overview

10.1.1 Test & V&V Objectives

Test procedures or plans will specify the following as applicable:
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[J required tests and test sequence

[ required ranges of input parameters

[J identification of the stages at which testing is required
[] criteria for establishing test cases

[J requirements for testing logic branches

[0 requirements for hardware integration

[J anticipated output values

[J acceptance criteria

[ reports, records, standard formatting, and conventions
[J performance testing

Any developer, including externals, are responsible for ensuring the creation of a
test case (see def.) that covers the new capability or code change. The CCB (any
of its member not directly involved in the CR) is responsible, through the help of
the Review Check Lists (see def.), for verifying that an appropriate test case is
provided, and passes based on the supplied acceptance criteria. This verification is
performed for any CR and failing to meet these requirements shall conclude in
rejecting the CR by the CCB member/reviewer. The process for handling CRs that
modify or add requirements is discussed in Section 5, Configuration Management
Activities.

HYBRID is open source (see def.) software that is maintained and stored in
GitHub (see def.), a public repository. In order to align the testing and V&V
activities of the software with the nature of the Agile development process (see
def.), the verification of the software has been designed in a multi-stage
automated testing suite, using the Continuous Integration System (CIS) (see def.)
in GitHub.

The main scope of the automated testing is to guarantee that any capability is
properly tested and that new addition to the software do not impact the

functionalities of the already-deployed capabilities.

Four types of testing, unit, integration, system, and deployment, are covered by
the HYBRID software.
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The project manager/technical leader oversees the testing and verification and
validation (V&V) activities, including the analysis of test coverage and the
determination of when new tests are necessary. The test coverage analysis is
performed during the code review activities conducted by the HYBRID core team
(see def.), and it is determined at that step in the process if one or more new tests
needs to be created. V&V activities are distributed among the HYBRID core team.

Every time a new development or capability is performed by a software
developer, the following shall be determined:

[ Required test activities and method of documentation (e.g., test plans,
procedures, checklists, etc.);

[ Required support software (see def.) (e.g., automated test scripts, fault
insertion tools, etc.);

[J Type and extent of required testing; and
[J Required reviews and approvals.

A component (or more) of the change control board (CCB) (see def.), not being
part of the development, shall review the correct documentation of the tests and
ensure that the documentation includes approved requirements (when necessary)
that have valid acceptance criteria. This documentation may include:

[1 Documentation of the tests including acceptance criteria. The
documentatlon procedure is defined in the HYBRID w1k1 page

(https:

Tests

[ Software Requirements Specification or equivalent requirements
document;

[ Requirements Traceability Matrix;

[0 Software Design Description for guidance on testing methodologies and
the operating environment (i.e., software, firmware, and hardware
elements) to be used during testing;

[l User documentation (see def.)

The CIS will verify that the provided documentation ensures that the software
demonstrates adherence to the documented requirements and that the software
produces correct results.
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10.1.2 Master Schedule

The V&V tasks (as captured in the automated tests) are executed
automatically for every change to HYBRID software (i.e. source code).
At several steps during the change commit process, automated tests are
executed.

10.1.3 Specific meaning of V&V activities for HYBRID software

The HYBRID software contains modelica models that will be, if
available, compared with experimental results.

10.2 TYPES OF TESTS TO BE EXECUTED

Tests are defined using an input file syntax, which specifies what the test should do, the
inputs, and the post conditions for determining test success or failure; and assuring that
the software produces correct results. The guidelines for the creation of a new test are
reported in the HYBRID wiki page (https:/github.com/idaholab/HYBRIDI- |

/wikis/Developing-Regression-Tests). Any test case that is connected with a requirement

or modify/add a new requirement shall be tagged with the associated requirement ID.
Acceptance Criteria for each test is defined by the Test type (defined below).

The collection of Test types ensure that the software properly handles abnormal
conditions and events as well as credible failures, does not perform adverse unintended
functions, and does not degrade the system either by itself, or in combination with other
functions or configuration items.

The Test types and acceptance criteria for each are as follows:

- CSV(diff: A test case that runs a simulation, terminates without error, and
produces a previously defined comma separated value solution within a
predefined tolerance (usually to at least single precision accuracy or better). The
order of data in the CSV must exactly match the reference solution file.

- UnorderedCSVDiffer: A test case that runs a simulation, terminates without error,
and produces a previously defined comma separated value solution within a
predefined tolerance (usually to at least single precision accuracy or better). The
order of data (rows) in the CSV can be different with respect the previously
defined file. Note: This Test is generally used when multiple parallel executions
of an underneath model are performed, and the collection of the data can be
unsynchronized depending on the latency of the network/machine. This test is
only allowed if a parallel test is created.

- TextDiff: A test case that runs a simulation, terminates without error, and
produces a previously defined text file that matches a reference solution file.
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- XMLDIff: A test case that runs a simulation, terminates without error, and
produces a previously defined Extensible Markup Language (XML) solution
within a predefined tolerance (usually to at least single precision accuracy or
better).

- RAVENImageDiff: A test case that runs a simulation, terminates without error,
and produces a previously defined image or picture within a predefined tolerance
(in terms of pixel difference).

- RavenErrors: A test case that runs and produces a specified console output or
output pattern and terminates with an expected error code or message.

- DymolaMatDiff: A test case that runs a simulation, terminates without error, and
produces a previously defined “. mat” solution file within a predefined tolerance
(usually to at least single precision accuracy or better).

- HPCinteraction: A test case that runs a simulation in a High-Performance
Computing System using its native Job Scheduler and Workload manager (e.g.
Portable Batch System — PBS), terminates without error.

In addition to the above reported Test types, for any CR the following tests are
performed:

- Documentation Test: The CIS tests that the User Documentation and SQA
Documentation can correctly be generated.

- Code Standard Validation: The CIS tests that all the source code is compliant with
the RAVEN software coding standards (e.g. source code syntax, formats,
documentation, etc.).

- Code Coverage: The CIS tests that at least the 80% of the source code is tested by
the test suite.

10.3 Test Automation

Testing is performed automatically as part of the CIS process when a user commits
a change to the repository. The automated tests that are executed at subsequent
steps in the process vary in scope and type and are described in Table 2. Tests of
the framework across multiple platforms (operative systems and versions) are
executed with each pull request (see def.).

In order to pass acceptance testing, all test cases are expected to pass under the
environments identified in the configuration items for HYBRID software.
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Use of the automated tests is integrated directly into GitHub, and as such does not
require additional training other than general familiarity with performing a pull

request in GitHub.

Results from each test execution are maintained in the CIS database, in an
approved records repository along with results from the timing executions and

code coverage.

10.4

APPROVAL REQUIREMENTS

The HYBRID software relies on a heavy automation of the verification and testing of any
new or modified capability. This approach is required for the nature of the Agile
development process. As mentioned in the previous section, any CR in the source code
needs to be accompanied with a new (or modified) test to assess the correctness of the

code and its functionality.

Depending of the type of test case that is added or modified, two different approval

processes are followed:

10.5 Requirement tests

This category is about to test any functionality that is linked to any new or

assessed requirements.

Table 3 - Requirement tests' responsibilities.

Test Case Reviewer(s):

Chair of the CCB, Technical Leader and

Independent Reviewer (Member of the CCB)

Test Result Reviewer and Approver:

Chair of the CCB or Technical Leader and
Independent Reviewer (Member of the CCB)

Acceptance Test Case Reviewer(s):

Chair of the CCB, Technical Leader and
Independent Reviewer (Member of the CCB)

Acceptance Result Reviewer(s):

Automated CIS

Acceptance Result Approver:

Automated CIS

10.6  Other tests

This category is about to test any functionality that is not linked to any specific

requirement (e.g. infrastructure tests, verification tests, etc.).
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Table 4 - Other tests' responsibilities

Test Case Reviewer(s):

Independent Reviewer (Member of the CCB)

Test Result Reviewer and Approver:

Independent Reviewer (Member of the CCB)

Acceptance Test Case Reviewer(s):

Independent Reviewer (Member of the CCB)

Acceptance Result Reviewer(s):

Automated CIS

Acceptance Result Approver:

Automated CIS

10.7 TEST DEFINITION TASKS AND RESPONSIBILITIES

This section summarizes the tasks and associated roles in the definition of the test cases

and their approval.

Table 5 - Tasks and responsibilities for tests creation.

Tasks

Responsibility

1. Complete programming and test
creation

Developer of the proposed CR

Test data creation

Developer of the proposed CR

Set up test environment

Automated via CIS

Migrate services to test environment

Automated via CIS

Set up test database

Automated via CIS

Prepare test cases

Developer of the CR

A S e ol Pl

Conduct test, record results, and
communicate to the developers

Automated via CIS

8. Make corrections and updates to the
processes

Developer of the CR

9. Review and approve final results of
the test

Independent reviewer part of the CCB and
Technical Leader (or Chair of CCB) in case
of requirement test.

Note: The above steps need to be conducted for every type of testing

V&V PROCESSES

The V&V PROCESSES of the HYBRID Software fully adheres with the one spelled out
in the PLN-5552, “RAVEN and RAVEN Plug-ins Software Quality Assurance and
Maintenance and Operations Plan” (replacing the word RAVEN with HYBRID).
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12. PROBLEM REPORTING AND CORRECTIVE ACTION

The PROBLEM REPORTING AND CORRECTIVE ACTION of the HYBRID Software
fully adheres with the one spelled out in the PLN-5552, “RAVEN and RAVEN Plug-ins
Software Quality Assurance and Maintenance and Operations Plan” (replacing the word
RAVEN with HYBRID).

13. TOOLS, TECHNIQUES, AND METHODOLOGIES

The TOOLS, TECHNIQUES, AND METHODOLOGIES of the HYBRID Software fully
adheres with the one spelled out in the PLN-5552, “RAVEN and RAVEN Plug-ins
Software Quality Assurance and Maintenance and Operations Plan” (replacing the word
RAVEN with HYBRID).

14. SUPPLIER CONTROL

No subcontractors/vendors activities are envisioned for HYBRID. In case of a new
strategy, involving subcontractors, is defined, this plan will be revised.

15. RECORDS COLLECTION, MAINTENANCE, AND RETENTION

The RECORD COLLECTION, MAINTENANCE, AND RETENTION process of the
HYBRID Software fully adheres with the one spelled out in the PLN-5552, “RAVEN and
RAVEN Plug-ins Software Quality Assurance and Maintenance and Operations Plan”
(replacing the word RAVEN with HYBRID).

16. TRAINING

The TRAINING process of the HYBRID Software fully adheres with the one spelled out
in the PLN-5552, “RAVEN and RAVEN Plug-ins Software Quality Assurance and
Maintenance and Operations Plan” (replacing the word RAVEN with HYBRID).

17. RISK MANAGEMENT

The risk analysis for each application is documented on the safety software determination
(SSD) and quality level determination (QLD). The SSD and QLD are identified in the EA
repository for each individual application. Risks associated with the HYBRID software
are controlled via the rigor implemented in requirements identification, testing,
verification and validation, and change control processes.

17.1 Safety Software Determination

The SSD documents the decision basis as to why a software application is or is
not safety software. The record copy is maintained within the company approved
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1 Introduction

The HYBRID repository is a collection of models and workflows used to assess the technical and
economic feasibility of different integrated energy systems. The repository includes a library of
high fidelity Modelica models developed in Dymola that includes models of nuclear reactors, gas
turbines, hydrogen production facilities, energy storage technology, and other integrated energy
system technologies. Models have been developed since 2014 through a tri lab coordination be-
tween Idaho National Laboratory (INL), Oak Ridge National Laboratory (ORNL), and Argonne
National Laboratory (ANL). With the models users can quickly create large scale integrated energy
systems to test out the technical interoperability of systems and develop novel control strategies
to best integrate systems together. In addition to the high fidelity modelica models the HYBRID
repository provides workflows that allows direct integration with the Risk Analysis Virtual En-
vironment (RAVEN) code (https://github.com/idaholab/raven) developed at INL
and it’s plugins the Heuristic Energy Resource Optimization Network (HERON - available at
https://github.com/idaholab/heron) and the Tool for Economic Analysis (TEAL
- available at https://github.com/idaholab/teal) packages.

1.1 User Characteristics

The users of the HYBRID software are expected to be part of any of the following categories:

¢ Core developers (HYBRID core team): These are the developers of the HYBRID software.
They will be responsible for following and enforcing the appropriate software development
standards. They will be responsible for designing, implementing, and maintaining the soft-
ware.

External developers: A Scientist or Engineer that utilizes the HYBRID framework and
wants to extend its capabilities (new modelica models, new workflow generation, etc).This
user will typically have a background in modeling and simulation techniques and/or control
systems but may only have a limited skill-set when it comes to repository structure, regres-
sion testing, and version control.

Analysts: These are users that will run the code and perform various analysis on the simula-
tions they perform. These users may interact with developers of the system requesting new
features and reporting bugs found and will typically make heavy use of the input file format.

1.2 Other Design Documentation

Also available within the repository “Repository” is the HYBRID Repository User manual within
the “docs” folder. This user manual gives a detailed explanation of the installation process, system

7
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dependencies alongside links upon which where to find them, and an explanation of the Modelica
models within the repository.

1.3 Dependencies and Limitations
The software should be designed with the fewest possible constraints. Current constraints are:
1. Commercial Modelica platform Dymola—https://www.3ds.com/products-services/

catia/products/dymola/latest-release/

2. Risk Analysis and Virtual ENviroment (RAVEN)—https://raven.inl.gov/SitePages/
Software%$20Infrastructure.aspx

3. Python3-https://docs.conda.io/en/latest/miniconda.html

4. Microsoft Visual Studio Community Edition. —https://visualstudio.microsoft.
com/downloads/
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3 Definitions and Acronyms

3.1 Definitions

 Baseline. A specification or product (e.g., project plan, maintenance and operations [M&O]
plan, requirements, or design) that has been formally reviewed and agreed upon, that there-
after serves as the basis for use and further development, and that can be changed only by
using an approved change control process. [ASME NQA-1-2008 with the NQA-1a-2009
addenda edited]

¢ Validation. Confirmation, through the provision of objective evidence (e.g., acceptance
test), that the requirements for a specific intended use or application have been fulfilled.
[ISO/TEC/IEEE 24765:2010(E) edited]

¢ Verification.

— The process of evaluating a system or component to determine whether the products of
a given development phase satisfy the conditions imposed at the start of that phase.

— Formal proof of program correctness (e.g., requirements, design, implementation re-
views, system tests). [ISO/IEC/IEEE 24765:2010(E) edited]

3.2 Acronyms

API Application Programming Interfaces

ANL Argonne National Laboratory

ARMA Auto-Regressive Moving Average

DOE Department of Energy

FMI Functional Muck-up Interface

FMU Functional Muck-up Unit

HERON Heuristic Energy Resource Optimization Network
IES Integrated Energy Systems

INL Idaho National Laboratory

NHES Nuclear-Renewable Hybrid Energy Systems

IT Information Technology

10
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ORNL Oak Ridge National Laboratory

M&O Maintenance and Operations

NQA Nuclear Quality Assurance

POSIX Portable Operating System Interface

QA Quality Assurance

RAVEN Risk Analysis and Virtual ENviroment

SDD System Design Description

TEAL Tool for Economic Analysis

TRANSFORM Transient Simulation Framework of Reconfigurable Modules

XML eXtensible Markup Language

11
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4 Design Stakeholders and Concerns

4.1 Design Stakeholders

* Integrated Energy Systems (IES) program

* Open-source community

4.2 Stakeholder Design Concerns

The Hybrid repository is to be deployed in accordance with the funding programs reported above.
No specific concerns have been raised during the design and deployment of the Hybrid software.

12
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5 Software Design

5.1 Introduction

The HYBRID repository is a collection of models and workflows used to assess the technical and
economic feasibility of different integrated energy systems. The purpose of the software is to
allow the user to design process models quickly and efficiently for use within a technoeconomic
analysis. The models are to be designed with the goal of interoperability and “plug and play”
design in mind. This design philosophy allows users to quickly create and test new integrated
energy systems, control schemes, and energy offtake opportunities and pathways.

In addition to the high fidelity modelica models the HYBRID repository provides basic work-
flows that allows direct integration with the Risk Analysis Virtual Environment (RAVEN) code
developed at INL and it’s plugins the Heuristic Energy Resource Optimization Network (HERON)
and the Tool for Economic AnaLysis (TEAL) packages. Through the integration of these different
packages and repositories complete grid analysis and systemwide optimization can be achieved.

5.2 Hybrid Repository Structure

The HYBRID Repository structure is illustrated in Figure 1 where the components are:

* Models: Folder containing the Modelica/Dymola models and future location of new RAVEN
workflows generated.

* doc/user_manual: Folder containing the user manual for the repository
e archive: containing legacy workflows from previous externally released milestones.

* TRANSFORM library: Submodule of the Oak Ridge National Laboratory (ORNL) based
TRANSFORM library that is used as the base models for many of the integrated energy
systems models

e raven: submodule linking to the RAVEN ( [1]) repository

* scripts: containing the dymola_launcher and the tools for loading Modelica/Dymola outputs
into a Python environment

* tests: containing all the tests that are automatically executed by the Continuous Integration
system and executable, locally, running the command “run_tests.”
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Within the Models folder there are two subfolders NHES and RAVEN_WORKFLOWS. The
RAVEN_WORKFLOWS folder is empty and is where future RAVEN_WORKFLOWS used in
techno-economic analysis will be placed. The NHES folder contains all the Modelica mod-
els ranging from Gas Turbines to Nuclear power plant and all the associated subsystems. The
doc/user_manual folder contains the user manual for the HYBRID repository. The archive folder
contains the models executed for two 2017 milestones. The TRANSFORM submodule is a library
of Modelica models created by ORNL in conjunction with the NHES library that is used as the
base models for many of the integrated energy systems developed within the NHES library. The
TRANSFORM submodule is updated on a six month basis and all regression tests are run to en-
sure none of the models are broken between updates. The raven submodule is a link to the RAVEN
repository and is updated frequently to ensure all the latest optimization and processing capabili-
ties are available. The scripts folder contains files to allow the automatic launching of Dymola for
use within the regression system. Additionally, it holds a folder called testers that contains all the
files used to enable the .mat differ used within the regression system ROOK. Then the final folder
is tests which contains all the tests that are automatically executed by the Continuous Integration
system. Within the tests folder there are dymola_tests and raven tests/train. The dymola_tests
contains all of the dymola regression tests while the raven_tests/train contains all of the raven tests
that may need to be added as additional raven workflows are added to the Hybrid repository. The
repository structure is evolving, but the current topology of the folders will stay the same.

Name Last commit Last update
= gitlab issue and MR templates added 2 years ago
& Models Addition of Initialization f and cleaning of example files in t

& archive added descriptic 2 months agq
& developer_tools dded descrip 2 months aqge
& doc/user_manual Latex File Tree Addition week ago
& seripts fixed list 2 weeks ag¢
& tests Update of Readme for what the different tests are

® TRANSFORM-Library @ 96d3493a ided transform submodule 2 months age
® raven @ 68137c37 updated raver weeks ago

¥ gitignore Chan

© gitmodules added transform submadule menths ago
& 0OREADME.txt Civet test dirtectory set-up 4 years ago
#+ README.md Update README.md 5 months ago

1 run_tests Use proper pathsep for the 2 months ago

Figure 1: Structure of the HYBRID repository.
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5.3 Regression Test System

HYBRID a repository that contains a series of Modelica models capable of producing potential
integrated energy system configurations. To test these models the RAVEN based regression system
ROOK has been utilized. This testing system has been linked with the Continuous Integration tool
to automatically test the models when new modifications are added to the repository. To do this
RAVEN has been sub-moduled within HYBRID.

5.3.1 Dymola Regression Tests

ROOK operates via a basic testing harness. The testing harness includes a “tests” file that contains
the tolerance limits, a gold folder with a gold test file, a simulation file to run, a file with which
to launch the simulation, and a directory of tests to run. Since the models to be run are Modelica
models within the Dymola simulation platform a dymola_launcher file was created to automatically
run Dymola via the command line interface. For Modelica models the gold file is checked via a
.mat file differ that has been created within the ROOK testing harness. This .mat differ checks all
variables created by the test and compares them with an earlier version of the system. If the new
.mat file is within a specified “tolerance” then the testing harness comes back with a clean pass. A
series of Modelica tests have been added to test the system-level interactions in the Nuclear Hybrid
Energy Systems (NHES) Modelica repository and the collection of regression tests will continue
to grow as the number of models and model uses grows.

5.3.2 Raven ”Hybrid Specific’” Regression Tests

In addition to the Modelica testing conducted by ROOK additional RAVEN specific tests are run.
These raven tests are of workflows that are specific to hybrid energy system workflow generation.
HYBRID is designed to be able to provide a techno-economic assessment of different integrated
energy systems. As part of this HYBRID includes the generation of RAVEN workflows capable
of implementing stochastic time series of wind, solar, and electric price data created via the Auto
Regressive Moving Averages (ARMAs) algorithms within RAVEN into a workflow that can then
be integrated into the Modelica models. The creation of these ARMAS using data held within the
HYBRID repository is maintained using the ROOK system.
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6 Data Design and Control

The data transfer in the HYBRID framework is fully standardized:

* Modelica Models: API deployed by Modelica Models;

* FMI/FMU: API deployed by the FMI/FMU importer/exporter for RAVEN and Modelica
models.

The documentation of these APIs is reported in the HYBRID user manual.
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7 Human-Machine Interface Design

There are no human system integration requirements associated with this software.
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8 System Interface Design

HYBRID framework contains Modelica models that can be interfaced directly by modelica pack-
ages (e.g. Dymola) or via the standardized FMI/FMU interface.
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9 Security Structure

The software is accessible to the open-source community (Apache License, Version 2.0). No
restrictions for downloading or redistributing is applicable.
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10 REQUIREMENTS CROSS-REFERENCE

The requirements are detailed in SPC-2990, “HYBRID Software Requirements Specification (SRS)
and Traceability Matrix”.
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1 Introduction

The HYBRID repository is a collection of models and workflows used to assess the technical and
economic feasibility of different integrated energy systems. The repository includes a library of
high fidelity Modelica models developed in Dymola that includes models of nuclear reactors, gas
turbines, hydrogen production facilities, energy storage technology, and other integrated energy
system technologies. Models have been developed since 2014 through a tri lab coordination be-
tween Idaho National Laboratory (INL), Oak Ridge National Laboratory (ORNL), and Argonne
National Laboratory (ANL). With the models users can quickly create large scale integrated energy
systems to test out the technical interoperability of systems and develop novel control strategies
to best integrate systems together. In addition to the high fidelity modelica models the HYBRID
repository provides workflows that allows direct integration with the Risk Analysis Virtual Envi-
ronment (RAVEN) code developed at INL and it’s plugins the Heuristic Energy Resource Opti-
mization Network (HERON) and the Tool for Economic AnaLysis (TEAL) packages.

This document is aimed to report and explain the HYBRID software requirements. In addition,
it reports the traceability matrix between software requirements and requirement tests (tests that
testify the software is compliant with respect its own requirements).

1.1 Other Design Documentation

Also available within the repository “Repository” is the HYBRID Repository User manual within
the “docs” folder. This user manual gives a detailed explanation of the installation process, system
dependencies alongside links upon which where to find them, and an explanation of the Modelica
models within the repository.

1.2 Dependencies and Limitations

The software should be designed with the fewest possible constraints. Current constraints are:

1. Commercial Modelica platform Dymola—https://www.3ds.com/products-services/

catia/products/dymola/latest-release/

2. Risk Analysis and Virtual ENviroment (RAVEN) —https://raven.inl.gov/SitePages/

Software%20Infrastructure.aspx
3. Python3 -https://docs.conda.io/en/latest/miniconda.html

4. Microsoft Visual Studio Community Edition. —https://visualstudio.microsoft.
com/downloads/
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3 Definitions and Acronyms

3.1 Definitions

 Baseline. A specification or product (e.g., project plan, maintenance and operations [M&O]
plan, requirements, or design) that has been formally reviewed and agreed upon, that there-
after serves as the basis for use and further development, and that can be changed only by
using an approved change control process. [ASME NQA-1-2008 with the NQA-1a-2009
addenda edited]

¢ Validation. Confirmation, through the provision of objective evidence (e.g., acceptance
test), that the requirements for a specific intended use or application have been fulfilled.
[ISO/TEC/IEEE 24765:2010(E) edited]

¢ Verification.

— The process of evaluating a system or component to determine whether the products of
a given development phase satisfy the conditions imposed at the start of that phase.

— Formal proof of program correctness (e.g., requirements, design, implementation re-
views, system tests). [ISO/IEC/IEEE 24765:2010(E) edited]

3.2 Acronyms

API Application Programming Interfaces

ANL Argonne National Laboratory

ARMA Auto-Regressive Moving Average

DOE Department of Energy

FMI Functional Muck-up Interface

FMU Functional Muck-up Unit

HERON Heuristic Energy Resource Optimization Network
IES Integrated Energy Systems

INL Idaho National Laboratory

NHES Nuclear-Renewable Hybrid Energy Systems

IT Information Technology
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ORNL Oak Ridge National Laboratory

M&O Maintenance and Operations

NQA Nuclear Quality Assurance

POSIX Portable Operating System Interface

QA Quality Assurance

RAVEN Risk Analysis and Virtual ENviroment

SDD System Design Description

TEAL Tool for Economic Analysis

TRANSFORM Transient Simulation Framework of Reconfigurable Modules

XML eXtensible Markup Language
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4 System Requirements: Hybrid

4.1 Minimum Requirements

4.1.1 Minimum Requirements
4.1.1.1 R-M-1

Dymola 2020x or higher

41.1.2 R-M-2

Visual Studio 2017 or higher with associated 64-bit Intel Compiler

41.1.3 R-M-3

Python 3 or higher to be able to execute RAVEN-based workflows

4.2 Functional Requirements

4.2.1 Modeling
421.1 R-F-1

HYBRID shall allow the user the leverage and use compoment models developed in Modelica
language

4.2.1.2 R-F-2

HYBRID shall provide models to simulate component/system control in Modelica language

11
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4.2.2 Framework, I/O, Execution Control
4.2.2.1 R-F-3

HYBRID shall allow the user the ability to interact with modelica models via the Dymola GUI.

4.3 Regression Requirements

4.3.1 Infrastructure Support
43.1.1 R-IS-1

HYBRID shall have regression tests to perform checks on modelica models.

4.4 System Interfaces

4.4.1 Interface with external applications
44.1.1 R-SI-1

HYBRID-based models shall be able to be coupled with external applications via input files

44.1.2 R-SI-2

HYBRID-based models shall be able to be coupled with standardized interface (FMI and FMU)

4.5 System Operations

4.5.1 Human System Integration Requirements

The command line interface shall support the ability to toggle any supported coloring schemes on
or off pursuant to section 508 of the Rehabilitation Act of 1973.
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4.5.2 Maintainability

The latest working version (defined as the version that passes all tests in the current regres-
sion test suite) shall be publicly available at all times through the repository host provider.

» Flaws identified in the system shall be reported and tracked in a ticket or issue based sys-
tem. The technical lead or any COB member will determine the severity and priority of all
reported issues. The technical lead will assign resources at his or her discretion to resolve
identified issues.

* The software maintainers will entertain all proposed changes to the system in a timely man-
ner (within two business days).

The HYBRID framework in its entirety is made publicly available under the Apache version
2.0 license.

4.5.3 Human System Integration Requirements

The regression test suite will cover at least 80% of all models at all times. The results of the
regression tests will be stored in the Continuous Integration System.

4.6 Information Management

The HYBRID framework in its entirety is made publicly available on an appropriate repository
hosting site (e.g. GitHub). Backups and security services will be provided by the hosting service.
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5 Verification

The regression test suite shall employ several verification tests of the correct mechanical executions
of the models and workflows reported in this repository.
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6 HYBRID:SYSTEM REQUIREMENTS

6.1 Requirements Traceability Matrix

This section contains all of the requirements, requirements’ description, and requirement test cases.
The requirement tests are automatically tested for each CR (Change Request) by the CIS (Contin-
uous Integration System).

6.1.1 Minimum Requirements

Requirment ID Requirment Descrip- | Test(s)
tion

R-M-1 Dymola 2020x or | 1)K. Frick, A. Alfonsi, C. Rabiti, “HYBRID
higher User Manual”, INL/MIS-20-60624

R-M-2 Visual Studio 2017 or | 1)K. Frick, A. Alfonsi, C. Rabiti, “HYBRID

higher with associated | User Manual”, INL/MIS-20-60624
64-bit Intel Compiler
R-M-3 Python 3 or higher | 1)K. Frick, A. Alfonsi, C. Rabiti, “HYBRID
to be able to execute | User Manual”, INL/MIS-20-60624
RAVEN-based work-
flows

Minimum Requirements

6.1.2 Functional Requirements

Requirment ID Requirment Descrip- | Test(s)
tion
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R-F-1

HYBRID shall allow
the user the leverage
and use compoment
models developed in
Modelica language

1)/HYBRID/tests/dy-
mola_tests/GTTP_Test/GTTP_Test.mos
2)/HYBRID/tests/dy-

mola_tests/SMR _primary_test/SMR _Test.mos
3)/HYBRID/tests/dy-

mola_tests/Desalination_2_pass/RO_2_pass.mos

4)/HYBRID/tests/dy-
mola_tests/NSSS_test/NSSS_Test.mos
5)/HYBRID/tests/dy-

mola_tests/Generic_Modular_PWR/Generic_Modular_Test.mc

6)/HYBRID/tests/dy-
mola_tests/Desalination_ ROmodule/RO_modu
7)/HYBRID/tests/dy-

mola_tests/Bouncing Ball/Bouncing_Ball.mos
8)/HYBRID/tests/dy-

mola_tests/HTSE Power_Test/HTSE Power T
9)/HYBRID/tests/dy-
mola_tests/StepDownTurbines_complex/Stepd
10)/HYBRID/tests/dy-
mola_tests/Desalination NHES basic/RO_Des
11)/HYBRID/tests/dy-
mola_tests/Hydrogen_Test/Hydrogen _Burn_Te
12)/HYBRID/tests/dy-
mola_tests/HTSE _Steam _Test/HTSE_Test.mos
13)/HYBRID/tests/dy-

le.mos

est.mos

ownTurbinesco

al_Test.mos

5§t.Mos

mola_tests/BOP_L1_Boundaries_a_Test/SteamTurbine_L1_bot

14)/HYBRID/tests/dy-
mola_tests/BOP_L1_Boundaries_b_Test/Steam
15)/HYBRID/tests/dy-
mola_tests/StepDownTurbines/StepdownTurbi
16)/HYBRID/tests/dy-
mola_tests/SMR_Nominal_Test/SMR_Couplin
17)/HYBRID/tests/dy-

Turbine_L1_bot
nes_Test.mos

g_Test.mos

mola_tests/Desalination NHES_complex/RO_Desal NHES_T¢

18)/HYBRID/tests/dy-
mola_tests/Desalination_1_pass/RO_1_pass.mo
19)/HYBRID/tests/dy-
mola_tests/SMR_4Loop/SMR _4Loop.mos
20)/HYBRID/tests/dy-

mola_tests/Desalination_2pass_mixing/RO_2pass_mixing.mos
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R-F-2

HYBRID shall pro-
vide models to sim-
ulate component/sys-
tem control in Model-
ica language

1)/HYBRID/tests/dy-

mola_tests/Supervisory Control_Test/InputSetpointData.mos

the user the ability to
interact with model-
ica models via the Dy-
mola GUL

Modeling
Requirment ID Requirment Descrip- | Test(s)
tion
R-F-3 HYBRID shall allow | 1)https://github.com/idaholab/hybrid/wiki

Framework, 1/0, Execution Control

6.1.3 Regression Requirements

Requirment ID Requirment Descrip- | Test(s)
tion
R-IS-1 HYBRID shall have | 1)/HYBRID/tests/dy-

regression tests to per-
form checks on mod-
elica models.

mola_tests/Simple_Breakers_Test/Simple_Bread

kers_Test.mos

Infrastructure Support

6.1.4 System Interfaces

Requirment ID Requirment Descrip- | Test(s)
tion
R-SI-1 HYBRID-based mod- | 1)/HYBRID/test-

els shall be able to be
coupled with external
applications via input
files

s/raven_tests/train/HYBRun_trainARMA _1day

.xml
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R-SI-2

HYBRID-based

models shall be able
to be coupled with
standardized interface

(FMI and FMU)

1)/HYBRID/tests/dy-

mola_tests/FMI_Fluid_ME/FlowReversalME.mos

2)/HYBRID/tests/dy-

mola_tests/FMI_Heat_ ME/HeatME.mos
3)/HYBRID/tests/dy-
mola_tests/FMI_heat_CS_capacity/HeatFlowC
4)/HYBRID/tests/dy-

5.mos

mola_tests/FMI_heat_CS_conduction/HeatFlowCS.mos

5)/HYBRID/tests/dy-
mola_tests/FMI_Fluid_CS/FlowReversal CS.m:

©»

Interface with external applications

18

181



v1.28

182



."Ih ldaho National Laborctory

183



184



APPENDIX E — SQA: HYBRID CONFIGURATION ITEM LIST

Document ID: LST-1296
Revision ID: 0
Effective Date: 10/01/2020

List

HYBRID Configuration
Items List

Andrea Alfonsi
The INL is a U.S. Department of Energy National Laboratory
operated by Battelle Energy Alliance.

|daho National
Laboratory
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Idaho National Laboratory

Form 412.09 (Rev. 10)

Identifier:

HYBRID CONFIGURATION ITEMS LIST |Revision:

Effective Date:  10/01/2020 Page: 2 of 6

LST-1296
1

| Applicability: | Configuration Items List | I ¢CR Number: |
Manual:
REVISION LOG
Rev. Date Affected Pages Revision Description
0 09/15/2020 All Creation of the Configuration Items List
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Form 412.09 (Rev. 10)

Idaho National Laboratory

Identifier: LST-1296

HYBRID CONFIGURATION ITEMS LIST |Revision: 1
Effective Date:  10/01/2020 Page: 3 of 6
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Form 412.09 (Rev. 10)

Idaho National Laboratory

Identifier: LST-1296

HYBRID CONFIGURATION ITEMS LIST |Revision: 1
Effective Date:  10/01/2020 Page: 4 of 6

1. PURPOSE
This document identifies all HYBRID Software configuration items (Cls) (see def.). This
document also identifies the level designation needed to modify CIs that can potentially
affect the ability of HYBRID Software to comply with NQA-1.

2. SCOPE
This list is intended to identify all CIs for HYBRID Software, to provide a document to

submit into the CTM (https://ctm.inl.gov) repository, and an aid to identify how severe a
change to HYBRID Software will be.

3. RESPONSIBILITIES
The Asset Owner is responsible for maintaining this list and, when necessary, updating the

EA repository when the configuration items list changes.

The Asset Owner is also responsible for maintaining configuration management in
accordance with PLN-6274, “HYBRID Software Quality Assurance and Maintenance and
Operations Plan.”

4. LIST

4.01 Software, Hardware, and Documentation
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Idaho National Laboratory

Form 412.09 (Rev. 10)

Identifier: LST-1296
HYBRID CONFIGURATION ITEMS LIST |Revision: 1

Effective Date:  10/01/2020 Page: 5 of 6
Table 1. Software, Hardware, and Documentation
Configuration | Component Description Repository/Location
Item
Application HYBRID Software GITHUB

Source Code

Source Code and tools for
HYBRID Software

(https://github.com/idaholab/
HYBRID)

RAVEN

Source Code for the RAVEN
code. The HYBRID Software
requires RAVEN for some
workflows to be functional.

GITHUB

(https://github.com/idaholab/
[raven)

System Modelica language . Capabilities & Technology
HYBRID Soft del
Software Software mo .e mg M(CTM)
language (Current versions
are maintained in the CTM | 3CIB336C-8262-4790-
, AEBD-582B1BD85CF5
repository)
Python 3.x Capabilities & Technology
HYBRID Soft kfl
eortware WOIK(OW | [Management(CTM) (UUID:
language (Current versions
are maintained in the CTM | SC9B336C-8262-4790-
. AEBD-582B1BD85CF5)
repository)
Unix-compatible Any compatible Unix system | N/A
systems (or Unix-like)
Support GITHUB CI Continuous Integration, GITHUB
Software Verification, Enhancement, Installed in all the Regression
and Testing. This is the Automatic Test Machines
continuous integration system | (Test Servers)
used by TEAL for automatic
testing.
Hardware Test Servers These servers are used to test | General Purpose Enclave

the HYBRID Software
functionality. It will use a
“snapshot” of live data to
perform the tests. If testing
on the server fails, that
version of HYBRID Software
is sent back to the
Development Server for
further configuration.
(Complete and up-to-date list
of servers is maintained in
CTM repository)

EROB
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Idaho National Laboratory

Form 412.09 (Rev. 10)

Identifier: LST-1296
HYBRID CONFIGURATION ITEMS LIST |Revision: 1
Effective Date:  10/01/2020 Page: 6 of 6

Workstations These consist of computer N/A

Laptops terminals that the end users

Personal Computer | use to access the software.

Documentation | SDD-000753 HYBRID Safety Software EDMS

Determination

ALL-XXXX HYBRID Quality Level EDMS
Determination

UUID: CE17AF70- | TEAL|Capabilities & EDMS

BAB9-46E6-9BBS8- |[Technology Management

74484B7F 1791 (CTM)

PLN-6274 HYBRID Software Quality EDMS
Assurance Plan

PLN-6274 HYBRID Configuration EDMS
Management Plan

PLN-6274 HYBRID Software Test Plan | EDMS
and V&V

PLN-6274 HYBRID Asset Maintenance | EDMS
Plan

SPC-2990 HYBRID Software EDMS
Requirements Specification
and Traceability Matrix

SDD-561 HYBRID Software Design EDMS
Description

SPC-2990 HYBRID Software EDMS
Requirements Specification
and Traceability Matrix

INL/MIS-20-60624 | HYBRID User Manual GITHUB
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